uva10288 Coupons 【概率 分数】】的更多相关文章

题目: 题意: 一共n种不同的礼券,每次得到每种礼券的概率相同.求期望多少次可以得到所有n种礼券.结果以带分数形式输出.1<= n <=33. 思路: 假设当前已经得到k种,获得新的一种的概率是(n-k)/n,则对应期望是n/(n-k).求和得到步数期望是n/n+n/(n-1)+...+n/1=n*sum(1/i) (1<= i <= n).需要注意及时约分,用分数类模板. 程序: #include <cstdio> #include <cassert> #…
UVa10288 题目非常简单, 答案就是 n/n+n/(n-1)+...+n/1; 要求分数输出.套用分数模板.. #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int maxn = 500; struct fraction { long long numerator; // 分子 long long…
UVA 10288 - Coupons option=com_onlinejudge&Itemid=8&page=show_problem&category=482&problem=1229&mosmsg=Submission+received+with+ID+13896541" target="_blank" style="">题目链接 题意:n个张票,每张票取到概率等价,问连续取一定次数后,拥有全部的票的期…
Description Coupons in cereal boxes are numbered 1 to n, and a set of one of each is required for a prize (a cereal box, of course). With one coupon per box, how many boxes on average are required to make a complete set of n coupons? Input Input cons…
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶快行动!” 你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢? 输入输出格式 输入格式: 整数n(2≤n≤33),表示不同球星名字的个数. 输出格式: 输出凑齐所有的名字平均需要买的饮料瓶数.如果是一个整数,则直接输出,否则应该直接按照分数格…
https://vjudge.net/problem/UVA-10288 大街上到处在卖彩票,一元钱一张.购买撕开它上面的锡箔,你会看到一个漂亮的图案. 图案有n种,如果你收集到所有n(n≤33)种彩票,就可以得大奖. 请问,在平均情况下,需要买多少张彩票才能得到大奖呢? 答案以带分数形式输出 例:当n=5时 思路简单,就是输出麻烦 #include<cstdio> #include<cstring> #include<cmath> #include<algori…
决策树意义: 分类决策树模型是表示基于特征对实例进行分类的树形结构.决策树可以转换为一个if_then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布. 它着眼于从一组无次序.无规则的样本数据(概念)中推理出决策树表示形式的分类规则.假设这里的样本数据应该能够用"属性-结论".决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的一个可以自动对数据进行分类的树形结构,是树形结构的知识表示,可以直接转换为分类规则.因为从可能的决策树中直接选取最优决策树是NP完全问题,现实…
This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees Vs SVM: Part I In this part we’ll discuss how to choose between Logistic Regression , Decision Trees and Support Vector Machines. The most correct ans…
从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了一发没过 上网看了一下才知道是快速幂 而且特征方程的推导简直精妙 尤其是共轭相抵消的构造 真的是太看能力了 (下图转自某大神博客) 特征方程是C^2=-2*a*C+(a*a-b) 然后用快速幂求解 临时学了下矩阵快速幂 从这道题能看出来 弄ACM真的要数学好 这不是学校认知的高数 线代 概率分数 而…
卷积神经网络(convolutional neural network,CNN),权值共享(weight sharing)网络结构降低模型复杂度,减少权值数量,是语音分析.图像识别热点.无须人工特征提取.数据重建,直接把图片作输入,自动提取特征,对平移.比例缩放.倾斜等图片变形具有高度不变形.卷积(convolution),泛函数分析积分变换数学方法,两个函数f和g生成第三个函数数学算子,表征函灵敏f与g翻转.平移重叠部分面积.f(x).g(x)为R1两个可积函数.积分新函数为函数f与g卷积.∫…
原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一篇文章已经给出了很好的回答,不过在这里再补充一些.下面将继续深入讨论这个主题.事实上,这三个算法在其设计之初就赋予了一定的内部特性,我们将其分析透彻的主要目的在于:当你面临商业问题时,这些算法的特性可以让你在选择这些算法时得到一些灵感. 首先,我们来分析下逻辑回归(Logistic Regressi…
keras构造神经网络,非常之方便!以后就它了.本文给出了三个例子,都是普通的神经网络 例一.离散输出,单标签.多分类 例二.图像识别,单标签.多分类.没有用到卷积神经网络(CNN) 例三.时序预测,单标签.多分类.(LSTM) 说明 keras对于神经网络给出的流程图,非常容易理解. 图片来源:https://www.jianshu.com/p/6c08f4ceab4c [重点]训练神经网络围绕以下对象:  1. 层,用于合并成网络(或模型)  2. 输入数据和相应的目标  3. 损失函数, …
Autonomous driving - Car detection Welcome to your week 3 programming assignment. You will learn about object detection using the very powerful YOLO model. Many of the ideas in this notebook are described in the two YOLO papers: Redmon et al., 2016 (…
转移性学习对阿尔茨海默病分类的研究 原文链接 摘要 将cv用于研究需要大量的训练图片,同时需要对深层网络的体系结构进行仔细优化.该研究尝试用转移学习来解决这些问题,使用从大基准数据集组成的自然图像得到的预训练权重来初始化最先进的VGG和Inception结构,使用少量的MRI图像来重新训练全连接层.采用图像熵选择最翔实的切片训练,通过对OASIS MRI数据集的实验,他们发现,在训练规模比现有技术小近10倍的情况下,他们的性能与现有的基于深层学习的方法相当,甚至更好 介绍 AD的早期诊断可以通过…
一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出是连续的.具体的值(如具体房价123万元)不同,逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的二分类)的问题.回答“是”可以用标签“1”表示,回答“否”可以用标签“0”表示. 比如,逻辑回归的输出是“某人生病的概率是多少”,我们可以进一步理解成“某人是否生病了”.设…
LR 与SVM 不同 1.logistic regression适合需要得到一个分类概率的场景,SVM则没有分类概率 2.LR其实同样可以使用kernel,但是LR没有support vector在计算复杂度上会高出很多.如果样本量很大并且需要的是一个复杂模型,那么建议SVM 3. 如果样本比较少,模型又比较复杂.那么建议svm,它有一套比较好的解构风险最小化理论的保障,比如large margin和soft margin 相同 1. 由于hinge loss和entropy loss很接近,因…
逻辑回归常见问题:https://www.cnblogs.com/ModifyRong/p/7739955.html 推导在笔记上,现在摘取部分要点如下: (0) LR回归是在线性回归模型的基础上,使用sigmoid函数,将线性模型 wTx的结果压缩到[0,1]之间,使其拥有概率意义. 其本质仍然是一个线性模型,实现相对简单.在广告计算和推荐系统中使用频率极高,是CTR预估模型的基本算法.同时,LR模型也是深度学习的基本组成单元. LR回归属于概率性判别式模型,之所谓是概率性模型,是因为LR模型…
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LSTM and Answering Point Model 5: Bi…
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3).https://www.cnblogs.com/pinard/p/6029432.html (4).https://zhuanlan.zhihu.com/p/76563562 (5).https://www.cnblogs.com/ModifyRong/p/7739955.html 一.逻辑回归介…
上次我尝试做了一个给眼镜加特效,针对的是静态图像,具体文章参考 https://ai.baidu.com/forum/topic/show/942890 . 这次我尝试在视频中加眼镜特效,并且加上手势识别,不同的手势佩戴不同的眼镜.接下来将介绍手势识别接口,并介绍如何接入. 手势识别接口 接口描述识别图片中的手势类型,返回手势名称.手势矩形框.概率分数,可识别24种常见手势,适用于手势特效.智能家居手势交互等场景. 支持的24类手势列表:拳头.OK.祈祷.作揖.作别.单手比心.点赞.Diss.我…
感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for  Real-time 3D Object Detection on Point Clouds原文地址:http://www.sohu.com/a/285118205_715754代码位置:https://github.com/Mandylove1993/complex-yolo(值得复现一下) 摘要.基于激光雷达的三维目标检测是自动驾驶的必然选择,因为它直接关…
1,概述 目前有效的文本分类方法都是建立在具有大量的标签数据下的有监督学习,例如常见的textcnn,textrnn等,但是在很多场景下的文本分类是无法提供这么多训练数据的,比如对话场景下的意图识别,这个时候如果我们还以传统的深度学习模型+softmax的形式来分类的话,是极容易陷入过拟合的状态.因此就有很多人研究在少量样本下如何建模.one-shot learning,few-shot learning,甚至是zero-shot learning都是旨在解决这类的问题. 本篇博客将会介绍下几种…
遇到的问题 在处理数据过程中,遇到需要取(n)个数的问题,而当样本量过大的时候,就不能简单的take(n),这类问题一般有两种情况: > - 有序取 TopN > - 无序取 N 先来讨论无序取N的情况: sample函数 sample(boolean, fraction,seed) : 按比例抽取 返回一个新的RDD withReplacement:元素可以多次抽样(在抽样时替换) withReplacement=true,表示有放回的抽样 withReplacement=false,表示无…
题意:\(A,B\)两人,有\(N\)个事件,每件发生的概率都为\(0.5\),若事件\(i\)发生,则\(B\)加\(v_i\)分数,若其不发生,则\(B\)不加分,给定一个概率\(P\),问至少需要多少分数,才能使得$A $ 有\(P\)的概率分数不小于\(B\) 解:求出每种分值所对应的概率,问题就转换成,\(B\)获得每种分数\(i\)都有一概率\(q_i\),求最小的\(Ans\),满足\(\sum_0^{Ans}q_i <=P\). dp + 前缀和. #include<iostr…
AI面试必备/深度学习100问1-50题答案解析 2018年09月04日 15:42:07 刀客123 阅读数 2020更多 分类专栏: 机器学习   转载:https://blog.csdn.net/T7SFOKzorD1JAYMSFk4/article/details/80972658 1.梯度下降算法的正确步骤,(正确步骤dcaeb)(梯度下降法其实是根据函数的梯度来确定函数的极小值),这里的问题与其说是梯度下降算法的步骤不如说类似图图像分类训练的整个流程:网络初始化-输入to输出-期望输…
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Attentive Reader Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LS…
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch…
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 action操作实例 三.spark算子详解 3.1弹性分布式数据集 (RDD) 3.2Spark 算子大致可以分为以下两类 3.2.1Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理 3.2.2Action 行动算子:这类算子会触发 SparkContext…
转自:https://zhuanlan.zhihu.com/p/79934510 风控业务背景 在风控中,我们常用KS指标来评估模型的区分度(discrimination).这也是风控模型同学最为追求的指标之一.那么,有多少人真正理解KS背后的内涵?本文将从区分度的概念.KS的计算方法.业务指导意义.几何解释.数学思想等多个维度展开分析,以期对KS指标有更为深入的理解认知. 目录Part 1. 直观理解区分度的概念Part 2. KS统计量的定义Part 3. KS的计算过程及业务分析Part…
网络模型mAP计算实现代码 一.mAP精度计算 这里首先介绍几个常见的模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive)分别是: 1)True positives(TP):  被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数): 2)False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数: 3)False negatives(FN):被错误地划分为负例的个数,即实际为正…