首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
跟我学算法-吴恩达老师的logsitic回归
】的更多相关文章
跟我学算法-吴恩达老师的logsitic回归
logistics回归是一种二分类问题,采用的激活函数是sigmoid函数,使得输出值转换为(0,1)之间的概率 A = sigmoid(np.dot(w.T, X) + b ) 表示预测函数 dz = A - Y , A 表示的是预测结果, y 表示的是实际结果 cost = -y*logA - (1-y)*log(1-A) #表示损失函数 dw = np.dot(X, dz.T)/m db = np.sum(dz)/m w := w - a*dw # 更新w,a 表示学习率 b : =…
跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_rate_dacay 学习率衰减, mini-batch size 每次迭代的样本数目 当需要调节的参数的数目较多时,我们通常使用随机参数选择进行参数调节. 比如学习率的范围为0.0001 - 1 , 在0.0001-0.001之间,样本随学习率的变化较大,因此有必要增加这部分的权重,我们使用log…
跟我学算法-吴恩达老师(mini-batchsize,指数加权平均,Momentum 梯度下降法,RMS prop, Adam 优化算法, Learning rate decay)
1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间 当为1时,称为随机梯度下降 一般我们选择64,128, 256等样本数目 import numpy as np import math def random_mini_batch(X, Y, mini_batch = 64, seed=0): np.random.seed(seed) m = X.sh…
机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/
机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave 开源 MatLab http://www.ai-start.com/ https://zhuanlan.zhihu.com/fengdu78 https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes 文档PDF https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes/blob/master/%E6%9C…
吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货
吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货 摘要: 目前,AI技术做出的经济贡献几乎都来自监督学习,也就是学习从A到B,从输入到输出的映射.现在,监督学习.迁移学习.非监督学习.强化学习这四类算法所创造的经济效益是递减的.机器学习依靠结构化数据,比非结构化数据创造了更多的经济效益.AI的范围,比监督学习广泛得多.我认为人们平时所说的AI,其实包含了好几类工具:比如机器学习.图模型.规划算法.知识表示(知识图谱). 人们的关注点集中在机器学习和深度学习,很大程度上是因为其他工…
吴恩达最新TensorFlow专项课程开放注册,你离TF Boy只差这一步
不需要 ML/DL 基础,不需要深奥数学背景,初学者和软件开发者也能快速掌握 TensorFlow.掌握人工智能应用的开发秘诀. 以前,吴恩达的机器学习课程和深度学习课程会介绍很多概念与知识,虽然也会有动手实验,但它们主要是为了帮助理解.在这一份 Coursera 新课中,吴恩达与谷歌大脑的 Laurence Moroney 从实践出发介绍了使用 TensorFlow 的正确姿态. 这一个专项课程目前主要包含两门课,即 TensorFlow 简介与 TensorFlow 中的卷积神经网络.第一课…
吴恩达(Andrew Ng)——机器学习笔记1
之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https://www.bilibili.com/video/av9912938).这篇学习笔记是结合第一.二部分(我所理解的): 第一部分:概览机器学习,介绍其中的一些专业名词及定义.Section 1-26 第二部分:如何使用Octave实现机器学习中的基本算法(Ocatave就是开源版的Matlab).Se…
吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我表示怀疑啊.难道又是我智商的问题嘛╮(╯_╰)╭. 推导神经网络, 我用了一天.最后完成了,我就放心了,可以进行下一部分学习了:) 推这玩意是个脏活累活,直接记住向量化表示(结果)也是极好的. 顺便说一下,本文的图片若看不清,可以另存为本地文件放大看(scan的时候我定了较高的精度),更清楚^^ 该…
吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 结构化机器学习项目 卷积神经网络 序列模型 第 1 部分讲的是神经网络的基础,从逻辑回归到浅层神经网络再到深层神经网络. 一直感觉反向传播(Back Propagation,BP)是这部分的重点,但是当时看的比较匆忙,有些公式的推导理解的不深刻,现在重新回顾一下,一是帮助自己梳理思路加深理解,二是记…
Coursera课程《Machine Learning》吴恩达课堂笔记
强烈安利吴恩达老师的<Machine Learning>课程,讲得非常好懂,基本上算是无基础就可以学习的课程. 课程地址 强烈建议在线学习,而不是把视频下载下来看.视频中间可能会有一些问题让你回答,这种互动的方式挺好的. 然后由于我个人的笔记是做在Onenote的笔记本里的,公式输入方法和markdown还是蛮不一样的,就不把自己的笔记放在博客里了.(而且感觉自己在瞎做) 最后强烈安利另外一位朋友的笔记.有word版,markdown版,pdf版,html版等等,业界良心!…