思路 多项式求逆就是对于一个多项式\(A(x)\),求一个多项式\(B(x)\),使得\(A(x)B(x) \equiv 1 \ (mod x^n)\) 假设现在多项式只有一项,显然\(B(x)\)的第0项(常数项)就是\(A(x)\)的第0项(常数项)的逆元(所以\(A(x)\)有没有逆元取决于\(A(x)\)的常数项有没有逆元) 那我们可以利用递归的方法, 现在要求 \[ A(x)B(x) \equiv 1 (mod\ x^n) \] 假设有多项式\(B'(x)\),满足 \[ A(x)B'…