多项式求逆入门 板题(Luogu P4238)】的更多相关文章

下面是代码,推导详见 传送门 模板Code #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int mod = 998244353, g = 3, MAXN = 1<<18; typedef long long LL; inline void change(int arr[], const int &len) { register…
手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: https://www.luogu.org/problemnew/show/P4725 题目大意: 给定一个\(n\)次多项式\(A(x)\), 求一个\(n\)次多项式\(B(x)\)满足\(B(x)\equiv \ln A(x) (\mod x^n)\) 题解: 神数学模板题-- 数学真奇妙! 前驱…
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A(x)B'^2(x) \pmod {x^n}$是可以的,但是一定要注意,这一步中有一个长度为n的和两个长度为(n/2)的多项式相乘,因此要在DFT前就扩展FFT点值表达的“长度”到2n,否则会出错(调了1.5个小时) 备份 版本1: #prag\ ma GCC optimize() #include…
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x)A(x)且A(x)B(x)≡1mod&ThinSpace;&ThinSpace;xnA(x)B(x)≡1 \mod x^nA(x)B(x)≡1modxn,那么我们称B(x)为A(x)A(x)A(x)在模xnx^nxn意义下的逆元,简单记作A−1(x)A^{−1}(x)A−1(x) 求法: n…
NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #…
思路 多项式求逆就是对于一个多项式\(A(x)\),求一个多项式\(B(x)\),使得\(A(x)B(x) \equiv 1 \ (mod x^n)\) 假设现在多项式只有一项,显然\(B(x)\)的第0项(常数项)就是\(A(x)\)的第0项(常数项)的逆元(所以\(A(x)\)有没有逆元取决于\(A(x)\)的常数项有没有逆元) 那我们可以利用递归的方法, 现在要求 \[ A(x)B(x) \equiv 1 (mod\ x^n) \] 假设有多项式\(B'(x)\),满足 \[ A(x)B'…
题目大意:多项式求逆 题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \dfrac{n}{2} \rceil}$下的逆元) 卡点:无 C++ Code: #include <cstdio> #define int long long #define maxn 262144 using namespace std; const int mod = 998244353; c…
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\frac{2}{\sqrt{1-4h(x)}+1}$ 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求$B(x)$,使得$A(x)*B(x)=1\;(mod\;x^m)$ 考虑倍增. 假设我们已知$A(x)*B(x)=1\;(mod\;x^m)$,要求$C(x)$,使得$A(x)*C(x)=1\;…
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减去不可行的方案数就行了 (容斥) 令 \(f_i\) 为有 \(i\) 个点的无向有标号连通图个数 . 考虑 \(1\) 号点的联通块大小 , 联通块外的点之间边任意 但 不能与 \(1\) 有间接联系 . 那么就有 \[\displaystyle f_i = 2^{\binom i 2} - \s…