一篇了解大数据架构及Hadoop生态圈 阅读建议,有一定基础的阅读顺序为1,2,3,4节,没有基础的阅读顺序为2,3,4,1节. 第一节 集群规划 大数据集群规划(以CDH集群为例),参考链接: https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_host_allocations.html https://blog.csdn.net/xuefenxi/article/details/81563033 Clou…
Hadoop是一个开源框架,它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据.它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储. “90%的世界数据在过去的几年中产生”. 由于新技术,设备和类似的社交网站通信装置的出现,人类产生的数据量每年都在迅速增长.美国从一开始的时候到2003年产生的数据量为5十亿千兆字节.如果以堆放的数据磁盘的形式,它可以填补整个足球场.在2011年创建相同数据量只需要两天,在2013年该速率仍在每十分钟极大地增长.虽然生产…
很多人问阿里的飞天大数据平台.云梯2.MaxCompute.实时计算到底是什么,和自建Hadoop平台有什么区别. 先说Hadoop 什么是Hadoop? Hadoop是一个开源.高可靠.可扩展的分布式大数据计算框架系统,主要用来解决海量数据的存储.分析.分布式资源调度等.Hadoop最大的优点就是能够提供并行计算,充分利用集群的威力进行高速运算和存储. Hadoop的核心有两大板块:HDFS和MapReduce. HDFS全称Hadoop Distributed File System,是一种…
原文:http://zhuanlan.zhihu.com/donglaoshi/19962491 作者: 董飞       提到大数据分析平台,不得不说Hadoop系统,Hadoop到现在也超过10年的历史了,很多东西发生了变化,版本也从0.x 进化到目前的2.6版本.我把2012年后定义成后Hadoop平台时代,这不是说不用Hadoop,而是像NoSQL (Not Only SQL)那样,有其他的选型补充.我在知乎上也写过Hadoop的一些入门文章 如何学习Hadoop - 董飞的回答,为了给…
提到大数据分析平台,不得不说Hadoop系统,Hadoop到现在也超过10年的历史了,很多东西发生了变化,版本也从0.x进化到目前的2.6版本.我把2012年后定义成后Hadoop平台时代,这不是说不用Hadoop,而是像NoSQL (Not Only SQL)那样,有其他的选型补充. 背景篇 Hadoop: 开源的数据分析平台,解决了大数据(大到一台计算机无法进行存储,一台计算机无法在要求的时间内进行处理)的可靠存储和处理.适合处理非结构化数据,包括HDFS,MapReduce基本组件. HD…
大数据我们都知道hadoop,可是还会各种各样的技术进入我们的视野:Spark,Storm,impala,让我们都反映不过来.为了能够更好的架构大数据项目,这里整理一下,供技术人员,项目经理,架构师选择合适的技术,了解大数据各种技术之间的关系,选择合适的语言.我们可以带着下面问题来阅读本文章:1.hadoop都包含什么技术2.Cloudera公司与hadoop的关系是什么,都有什么产品,产品有什么特性3.Spark与hadoop的关联是什么?4.Storm与hadoop的关联是什么? hadoo…
大数据架构-使用HBase和Solr将存储与索引放在不同的机器上 摘要:HBase可以通过协处理器Coprocessor的方式向Solr发出请求,Solr对于接收到的数据可以做相关的同步:增.删.改索引的操作,这样就可以同时使用HBase存储量大和Solr检索性能高的优点了,更何况HBase和Solr都可以集群.这对海量数据存储.检索提供了一种方式,将存储与索引放在不同的机器上,是大数据架构的必须品. 关键词:HBase, Solr, Coprocessor, 大数据, 架构   正如我的之前的…
大数据架构师必读的NoSQL建模技术 从数据建模的角度对NoSQL家族系统做了比较简单的比较,并简要介绍几种常见建模技术. 1.前言 为了适应大数据应用场景的要求,Hadoop以及NoSQL等与传统企业平台完全不同的新兴架构迅速地崛起.而下层技术基础的革命必将影响上层建筑:数据模型和算法.简单地将传统基于第四范式结构化关系型数据库的模型拷贝到新的引擎上,无异于削足适履,不仅增加了大数据应用开发的难度和复杂度,又无法发释放新框架的潜能. 该如何构建基于NoSQL的数据模型?现在能供参考的公开知识积…
大数据测试之初识Hadoop POPTEST老李认为测试开发工程师是面向测试的开发,也就是说,写代码就是为完成测试任务服务的,写自动化测试(性能自动化,功能自动化,安全自动化,接口自动化等等)的case或者开发测试工具完成不同类型的测试.其实自动化测试涉及面非常之广,目前来讲,case基本都可以写成自动化,而性能测试的脚本开发要围绕业务和协议特点来完成开发,并测试完成后依靠软件分析工具对被测试系统进行评估测试. 未来的技术趋势是云测试,大数据测试,安全性测试,这些要完成测试都需要自动化来完成,而…
<深度学习与计算机视觉 算法原理.框架应用>全书共13章,分为2篇,第1篇基础知识,第2篇实例精讲.用通俗易懂的文字表达公式背后的原理,实例部分提供了一些工具,很实用. <大数据架构详解:从数据获取到深度学习>从架构.业务.技术三个维度深入浅出地介绍了大数据处理领域端到端的知识. <深度学习与计算机视觉 算法原理.框架应用>PDF,带书签,347页. <大数据架构详解:从数据获取到深度学习>PDF,带书签,373页. 配套源代码. 网盘下载:http://1…