一个关于gcd的等式的证明】的更多相关文章

证:$a > b$ 且 $gcd(a,b)=1$,有 $gcd(a^n-b^n, a^m-b^m) = a^{gcd(n, m)} - b^{gcd(n,m)}$. 证明: 假设 $n > m$,$r = n \% m$. 根据辗转相除法, $a^n - b^n = (a^m-b^m)(a^{n-m} + a^{n-2m}b^m + ...+) + a^rb^{n-r} - b^n$, $gcd(a^n-b^n, a^m-b^m) = gcd(a^m-b^m, a^rb^{n-r}-b^n)…
下载本文PDF格式(Academia.edu) 本文给出了机器学习中AdaBoost算法的一个简单初等证明,需要使用的数学工具为微积分-1. Adaboost is a powerful algorithm for predicting models. However, a major disadvantage is that Adaboost may lead to over-fit in the presence of noise. Freund, Y. & Schapire, R. E.…
题意: 问 gcd(i,j) = i ^ j  的对数(j <=i <= N ) N的范围为30000000,有10000组例子 思路:GCD(a,b) = a^b = c GCD(a/c,b/c) = 1 (1) (a-b) <= c (2) (a/c-b/c) <=1 (3) (1)(3) => a/c-b/c = 1=> a-b=c #include <iostream> #include <cstdio> #include <cst…
我恨数论 因为打这篇的时候以为a|b是a是b的倍数,但是懒得改了,索性定义 a|b 为 a是b的倍数 咳咳,那么进入正题,如何证明gcd,也就是 gcd(a,b) = gcd(b,a%b)? 首先,设 p = a/b,c = a mod b 则a = p*b + c m = gcd(a,b),n = gcd(b,c) 因为m = gcd(a,b),所以 a | m 且 b | m 因为 b | m 所以 b * p | m                //  a|b,则a*k|b (k为整数)…
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ∀x(x|0) and ∀x(0| x). 1个引理: 假设 k|a, k|b,则对任意的 x,y  ∈ Z, k|(xa+yb)均成立. 证明: k|a => a=pk, k|b => b==qk (其中 p,q ∈ Z) 于是有 xa+yb=xpk+yqk=(xp+yq)k 因为 k|(xp…
导言:原文的作者是著名的Ghost和Spectre 这两个协议的创始团队的领队Aviv Zohar.原文作者说他的这篇原文又是引用了以下这两篇学术论文: How to Explain Zero Knowledge Protocols to Your Children (Quisquater et. al.) Cryptographic and Physical Zero-Knowledge Proof Systems for Solutions of Sudoku Puzzles (Gradwo…
我们来安利一个黑科技.(其实是Claris安利来的 比如我现在有一坨询问,每次询问两个不超过n的数的gcd. n大概1kw,询问大概300w(怎么输入就不是我的事了,大不了交互库 http://mimuw.edu.pl/~kociumaka/files/stacs2013_slides.pdf http://drops.dagstuhl.de/opus/volltexte/2013/3938/pdf/26.pdf 恩这篇paper里面发了一种预处理O(n)询问O(1)的gcd方法 我们定义一个数…
//NSObject //在子线程中执行代码 // 参数1: 执行的方法 (最多有一个参数,没有返回值) //参数2: 传递给方法的参数 [self performSelectorInBackground:@selector(cycling:) withObject:@"obj1"]; // 回到主线程更新页面 [self performSelectorOnMainThread:@selector(updateUI:) withObject:nil waitUntilDone:YES]…
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } 证明: 对于a,b,有a = kb + r  (a , k , b , r 均为整数),其中r = a mod b . 令d为a和b的一个公约数,则d|a,d|b(即a.b都被d整除), 那么 r =a - kb ,两边同时除以d 得 r/d = a/d - kb/d = m (m为整数,因为r也…
手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140 结论1 \[\gcd(x^{a}-1,x^{b}-1)=x^{\gcd(a,b)}-1\] 证明: 采用数学归纳法. 令\(a=kb+p\), 则有\(\gcd(x^{a}-1,x^{b}-1)=\gcd(x^{kb+p}-1,x^b-1)=\gcd(x^p(x^{kb}-1)+x^p-1,x^b-1)=\gcd(…