tf.reduce_max的运用】的更多相关文章

1.tf.reduce_max函数的作用:计算张量的各个维度上的元素的最大值.例子: import tensorflow as tfmax_value = tf.reduce_max([1, 3, 2])with tf.Session() as sess: max_value = sess.run(max_value) print(max_value)结果为3    2.tf.sequence_mask的作用是构建序列长度的mask标志 . 例子: import tensorflow as tf…
a=np.array([[[[1],[2],[3]],[[4],[25],[6]]],[[[27],[8],[99]],[[10],[11],[12]]],[[[13],[14],[15]],[[16],[17],[18]]],[[[14],[24],[15]],[[6],[197],[18]]]])print(a)print(a.shape)b=tf.reduce_max(a, axis=-1)print(b.shape)sess=tf.Session()c=sess.run(b)print(…
reduce 可以理解为 python 里的 reduce 函数: tensorflow 中有很多 reduce_ API,其用法完全相同 tf.reduce_max 以这个为例进行说明 def reduce_max(input_tensor, axis=None, keepdims=None, name=None, reduction_indices=None, keep_dims=None): """Computes the maximum of elements acr…
根据官方文档: reduce_sum应该理解为压缩求和,用于降维 tf.reduce_sum(input_tensor,axis=None,keepdims=None,name=None,reduction_indices=None,keep_dims=None) Args: input_tensor: The tensor to reduce. Should have numeric type. #输入 axis: The dimensions to reduce. If None (the…
import tensorflow as tf import tensorflow.contrib.slim as slim import rawpy import numpy as np import tensorflow as tf import struct import glob import os from PIL import Image import time __sony__ = 0 __huawei__ = 1 __blackberry__ = 2 __stage_raw2ra…
命名空间及变量共享 # coding=utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt; with tf.variable_scope('V1') as scope: a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) scope.reuse_variables() a3…
tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值. reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None) 第一个参数input_tensor: 输入的待降维的tensor; 第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值; 第三个参数keep_d…
一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格式数据 2.tf.contrib.learn.DNNClassifier 建立DNN模型(classifier) 3.classifer.fit 训练模型 4.classifier.evaluate 评价模型 5.classifier.predict 预测新样本 完整代码: from __fut…
0. 四则运算 平方:tf.square(),开方:tf.sqrt() tf.add().tf.sub().tf.mul().tf.div().tf.mod().tf.abs().tf.neg() 1. 简单数理统计 Rn→R(从矢量到标量),意味着一种约简(reduce). 均值:tf.reduce_mean,求和:tf.reduce_sum stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) 最大最小(极值):tf.reduce_m…
张量的定义 张量(Tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具.张量之所以重要,在于它可以满足一切物理定律必须与坐标系的选择无关的特性.张量概念是矢量概念的推广,矢量是一阶张量.张量是一个可用来表示在一些矢量.标量和其他张量之间的线性关系的多线性函数(可以理解成是向量.矩阵以及更高维结构的统称). But we don’t have to restrict our…
一.tensorflow中二维卷积函数的参数含义:def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1, 1, 1, 1], name=None)卷积操作函数:input:需要做卷积操作的图片:四维tensor张量,类型float32或float64:[batch,in_height,in_width,in_channels]形状(shape…
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程: https://www.tensorflow.org/versions/master/how_tos/graph_viz/index.html TensorFlow自带的一个强大的可视化工具 功能 这是TensorFlow在MNIST实验数据上得到Tensorboard结果 Event: 展示训练过程中的统计数据(最值…
序列分类,预测整个输入序列的类别标签.情绪分析,预测用户撰写文字话题态度.预测选举结果或产品.电影评分. 国际电影数据库(International Movie Database)影评数据集.目标值二元,正面或负面.语言大量否定.反语.模糊,不能只看单词是否出现.构建词向量循环网络,逐个单词查看每条评论,最后单词话性值训练预测整条评论情绪分类器. 斯担福大学人工智能实验室的IMDB影评数据集: http://ai.stanford.edu/~amaas/data/sentiment/ .压缩ta…
序列标注(sequence labelling),输入序列每一帧预测一个类别.OCR(Optical Character Recognition 光学字符识别). MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像.字线组合序列,序列对应单词.6800个,长度不超过14字母的单词.gzip压缩,内容用T…
转自:http://blog.csdn.net/qq_32166627/article/details/52734387 侵删. tensorflow中有一类在tensor的某一维度上求值的函数.如: 求最大值tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None) 求平均值tf.reduce_mean(input_tensor, reduction_indices=None, keep_dim…
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况.本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料. 一. 相关函数 TensorBoard的输入是tensorflow保存summary data的日志文件.日志文件名的形式如:e…
除法和取模运算符(/, //, %)现已匹配 Python(flooring)语义.这也适用于 tf.div 和 tf.mod.为了获取强制的基于整数截断的行为,你可以使用 tf.truncatediv 和 tf.truncatemod. tf.divide 现在是推荐的除法函数.tf.div 还将保留,但其语义将不会响应 Python 3 或 from future 机制 . tf.reverse 现在是将轴的索引反转.例如,tf.reverse ( a, [ True, False, Tru…
本文介绍了tensorflow的常用函数,源自网上整理. TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU. 下面是一些…
一.前述 TensorBoard是tensorFlow中的可视化界面,可以清楚的看到数据的流向以及各种参数的变化,本文基于一个案例讲解TensorBoard的用法. 二.代码 设计一个MLP多层神经网络来训练数据 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data max_steps = 1000#最大迭代次数 learning_rate = 0.001#学习率 dropout =…
卷积操作 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关的一共五个参数: input: 指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
摘要:本文主要对tf的一些常用概念与方法进行描述. tf函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作. 并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU.下面是…
github:https://github.com/zle1992/Seq2Seq-Chatbot 1. 注意在infer阶段,需要需要reuse, 2.If you are using the BeamSearchDecoder with a cell wrapped in AttentionWrapper, then you must ensure that: The encoder output has been tiled to beam_width via tf.contrib.seq…
import os os.environ['CUDA_VISIBLE_DEVICES'] = "0" from mlp_clf import MLPClassifier import numpy as np import tensorflow as tf from sklearn.datasets import load_svmlight_file from sklearn.utils import shuffle #from scipy.sparse import csr_matri…
MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机视觉数据集,美国中学生手写数字.训练集6万张图片,测试集1万张图片.数字经过预处理.格式化,大小调整并居中,图片尺寸固定28x28.数据集小,训练速度快,收敛效果好. MNIST数据集,NIST数据集子集.4个文件.train-label-idx1-ubyte.gz 训练集标记文件(28881字节)…
一.Tensor 之间的运算规则 1) 相同大小 Tensor 之间的任何算术运算都会将运算应用到元素级 2) 不同大小 Tensor(要求dimension 0 必须相同) 之间的运算叫做广播(broadcasting) 3) Tensor 与 Scalar(0维 tensor) 间的算术运算会将那个标量值传播到各个元素 4) Note:TensorFLow 在进行数学运算时,一定要求各个 Tensor 数据类型一致 二.算术操作(+,-,*,/,Mod) (1)tensor-tensor操作…
import news_cnn_model import numpy as np import os import pandas as pd import pickle import shutil import tensorflow as tf from sklearn import metrics learn = tf.contrib.learn REMOVE_PREVIOUS_MODEL = True MODEL_OUTPUT_DIR = '../model/' DATA_SET_FILE…
import tensorflow as tf import numpy as np import math import keras from keras.layers import Conv2D,Reshape,Input import numpy as np import matplotlib.pyplot as plt """ Channel attention module""" if __name__ == '__main__': f…