推式子 我们设\(n=kp+w\),则: \[(kp+w)a^{kp+w}\equiv b(mod\ p)\] 将系数中的\(kp+w\)向\(p\)取模,指数中的\(kp+w\)根据欧拉定理向\(p-1\)取模,得到: \[wa^{k+w}\equiv b(mod\ p)\] 两边同除以\(wa^w\),得到: \[a^k\equiv\frac b{wa^w}(mod\ p)\] 求答案 考虑到\(p\)很小,因此我们直接枚举\(w\),则右边式子的值可以通过预处理逆元和幂的逆元,\(O(1)…
这次模拟赛真的,,卡常赛. The solution of T1: std是打表,,考场上sb想自己改进匈牙利然后wei了(好像匈牙利是错的. 大力剪枝搜索.代码不放了. 这是什么神仙D1T1,爆蛋T1,好像A了它或拿分的就几个人,, The solution of T2: 题解是这么写的:和八皇后很像,八皇后是x+y和x-y来判重,这里就k1x+k2y来判重. 从各个点引出直线,带入原点检验方程即可. 注: x/y = Δx/Δy x*Δy = Δx*y 下面代码用了这个原理,省去了gcd(或…
打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后我们就可以暴搜了,大体就是枚举等式左边两个数每一位的值,并枚举中间的运算符是\(+\)还是\(-\),然后计算出等式右边的值,判断是否合法. 中间过程可以加上一些剪枝. 注意当火柴棒从某一位移到另一位时,我们可以规定,去除火柴棒需要算步数,加入火柴棒则无需算步数,这样就可以避免重复了. 具体实现有一…
几个性质 我们通过推式子可以发现: \[B⇒AC⇒AAB⇒AAAC⇒C\] \[C⇒AB⇒AAC⇒AAAB⇒B\] 也就是说: 性质一: \(B,C\)可以相互转换. 则我们再次推式子可以发现: \[B⇒AC⇒AB\] 也就是说: 性质二: 在\(B\)或\(C\)之前可以任意加或减少若干个\(A\). 同样,我们可以发现: \[A⇒BC⇒BB\] 也就是说: 性质三: 在\(B\)或\(C\)之前可以任意加偶数个\(B\)或\(C\). 有了这些性质,你以为就做完了吗? 闪指导\(hl666\…
暴力\(DP\) 先考虑暴力\(DP\)该怎么写. 因为每个序列之后是否能加上新的节点只与其结尾有关,因此我们设\(f_i\)为以\(i\)为结尾的最长序列长度. 每次枚举一个前置状态,判断是否合法之后进行转移. 优化\(DP\) 上面做法的瓶颈在于,判断是否合法需要大量时间. 则有一个比较巧妙的做法. 首先对于每一个数\(a_i\),\(\sqrt {max_{x=1}^na_x}\)范围内的某一质数\(j\),我们求出\(p_{i,j}\)表示\(a_i\)是否含有质因数\(j\). 然后,…
原题与此题 原题是一道神仙不可做题,两者区别在于,原题不能有重边和自环. 然而,这题可以有重边... 于是这题就变成了一道大水题. 此题的解法 考虑如何构造. 对于\(n\le10^4\)的情况: 对于\(n>10^4\)的情况: 边上的权值表示边数. 代码 #pragma GCC optimize(2) #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typena…
题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. 则我们可以用线段树优化建图. 具体步骤就是,建两棵线段树,每次新建一个虚节点,然后把需要向外连边的区间在一棵线段树上向这个节点连边,并从这个节点在另一棵线段树上向应被连边的区间连边. 求解答案 建完图之后,考虑如何求答案. 首先,我们\(Tarjan\)缩点,显然一个强连通分量内的所有节点可以相互…
找环 考虑每次洗牌其实是一次置换的过程,而这样必然就会有循环出现. 因此我们直接通过枚举找出每一个循环,询问时只要找到环上对应的位置就可以了. 貌似比我比赛时被卡成\(30\)分的倍增简单多了? 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typename Ty,typename... Ar> #define Reg register #define RI…
思维题 此题应该是比较偏思维的. 假设一次反射后前进的距离是\(2^x(2y+1)\),则显然,它可以看做是前进距离为\(2^x\)的光线经过了\((2y+1)\)次反射,两者是等价的,甚至后者可能还要更优. 因此,我们只需考虑前进距离为\(2^x\)的光线. 也就是说,我们枚举\(x\),统计\((2^x+a_i)\% 2^{x+1}\)与\(b_i\%2^{x+1}\)中众数的出现次数的最大值. 关于众数的统计,我很\(naive\)地开了个\(map\),实际上,似乎用排序可以得到更优秀的…
排序 3.1 题意描述 众所周知,熟练掌握至少一种排序算法是参加NOIP的必备技能.常见的排序算法有冒泡 排序.归并排序.快速排序.奇偶排序.猴子排序.梳排序.鸡尾酒排序.臭皮匠排序等. 在这里,介绍一种利用栈进行排序的方法.例如,当数组中的元素为 1,3,2 时,我们可 以利用栈对其进行排序:1 入栈:3 入栈:3 出栈:2 入栈:2 出栈:1 出栈.在这个例子中, 出栈序列是 3,2,1,因而实现了对数组的排序. 遗憾的是,在不打乱入栈顺序的前提下,有时仅仅借助一个栈是不能实现对数组的完全排…
LGTB 玩扫雷 在一个n m 的棋盘上,有位置上有雷(用“*” 表示),其他位置是空地(用“.” 表示).LGTB 想在每个空地上写下它周围8 个方向相邻的格子中有几个雷.请帮助他输出写了之后的棋盘 输入 第一行包含两个整数n, m 代表棋盘大小接下来n 行,每行m 个字符,代表棋盘1 n,m 1000 输出 输出包含n 行,每行m 个字符,代表LGTB 写了数字之后的棋盘 样例 样例输入3 3*.*...*.* 样例输出*2*242*2* 解题报告: 拿到这道题,有两种解法,第一种是枚举每一…
题目描述 LYK在玩猜数字游戏. 总共有n个互不相同的正整数,LYK每次猜一段区间的最小值.形如[li,ri]这段区间的数字的最小值一定等于xi. 我们总能构造出一种方案使得LYK满意.直到…… LYK自己猜的就是矛盾的! 例如LYK猜[1,3]的最小值是2,[1,4]的最小值是3,这显然就是矛盾的. 你需要告诉LYK,它第几次猜数字开始就已经矛盾了. 输入格式(number.in) 第一行两个数n和T,表示有n个数字,LYK猜了T次. 接下来T行,每行三个数分别表示li,ri和xi. 输出格式…
二分 首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案. 然后,我们只要贪心,就可以验证了. 贪心 不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能经过排插数量最大的那些充电器. 所以,我们只要模拟插排插的过程,记录当前深度\(d\).插座数\(t\)即可. 设选择的能经过排插数量恰好为\(d\)的充电器有\(x\)个,则若\(t<x\),显然不合法. 否则,我们将\(x\)个位置插上充电器,其余位置尽可能地插排插,就可以了. 代码 #incl…
没有换根操作 考虑如果没有换根操作,我们该怎么做. 我们可以求出原树的\(dfs\)序列,然后开线段树维护. 对于修改操作,我们可以倍增求\(LCA\),然后在线段树上修改子树内的值. 对于询问操作,我们直接查询子树内的值. 但有了换根操作,\(LCA\)就可能不再是原来的\(LCA\),子树也就可能不再是原来的子树了. 换根操作后的\(LCA\) 通过一波画图+找规律,我们可以发现,在根为\(rt\)时,换根操作后的\(LCA(x,y)\)大致有如下几种情况:(以下讨论中\(x,y\)互换同理…
旅行者问题 [问题描述] lahub是一个旅行者的粉丝,他想成为一个真正的旅行者,所以他计划开始一段旅行.lahub想去参观n个目的地(都在一条直道上).lahub在起点开始他的旅行.第i个目的地和起点的距离为ai千米(ai为非负整数).不存在两个目的地和起点的距离相同. 从第i个目的地走到第j个目的地所走的路程为 |ai-aj|千米.我们把参观n个目的地的顺序称作一次“旅行”.lahub可以参观他想要参观的任意顺序,但是每个目的地有且只能被参观一次(参观顺序为n的排列). lahub把所有可能…
Task 1.纸盒子 (box.pas/box.c/box.cpp) [题目描述] Mcx是一个有轻度洁癖的小朋友.有一天,当他沉溺于数学卷子难以自拔的时候,恍惚间想起在自己当初学习概率的时候准备的一堆橡皮还杂乱地堆在自习室里.这显然是他无法容忍的.于是他决定做一个体积为V(V=abc)的纸盒子,以便能整齐的摆放它们.为了简单起见,这个纸盒子的长.宽.高均为正整数.当然了,Mcx是一个以勤俭闻名的小朋友,因此他想知道,这个纸盒子的表面积(S=2ab+2ac+2bc)的最小值是多少呢? [题目输入…
第1题  小麦亩产一千八 [问题描述] “有了金坷垃,肥料一袋能顶两袋撒,小麦亩产一千八,吸收两米下的氮磷钾……”,话说HYSBZ(Hengyang School for Boys & Zy)学识渊博孩纸们一讲到粮食,都会想起印度那个著名的故事:国王要在第一个格子里放入一粒小麦,接下来的格子放入前面一个格子的两倍的小麦.这样所需小麦总数是巨大的,哪是不用金坷垃就能完成的任务?不过为了减轻国王的任务,那个下棋获胜的宰相换了一个要求:“我只需要你在棋盘外放一粒小麦,可以将其理解为第0个格子,然后你需…
链接: https://www.luogu.org/problemnew/show/U47231 思路: 这道题其实就是一道双Lazy线段树裸题 因为我们知道,当k一定时,取反偶数次最后k位等于不取反 同理,当k一定时,翻转偶数次最后k位等于不取反 我们使用双Lazy分别存下这两个东西 同时一直对2取模 同时我们使用标记永久化 向下传参Lazy 单点查询到这个点时,判断是否需要取反即可 取反和翻转是位运算基本知识 大家可以看代码 代码: #include<iostream> #include&…
[题目描述] 小 H 是个善于思考的学生,现在她又在思考一个有关序列的问题.        她的面前浮现出一个长度为 n 的序列{ai},她想找出一段区间[L, R](1 <= L <= R <= n).        这个特殊区间满足,存在一个 k(L <= k <= R),并且对于任意的 i(L <= i <= R),ai 都能被 ak 整除.这样的一个特殊区间 [L, R]价值为 R - L.        小 H 想知道序列中所有特殊区间的最大价值是多少,…
[题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论起了二叉搜索树.      什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树.设key[p]表示结点p上的数值.对于其中的每个结点p,若其存在左孩子lch,则key[p]>key[lch]:若其存在右孩子rch,则key[p]<key[rch]:注意,本题中的二叉搜索树应满足对于所有结点,其左子树中…
思维 这道题应该算是一道思维题吧. 首先你要想到,既然这是一棵无根树,就要明智地选择根--以第一个黑点为根(不要像我一样习惯性以\(1\)号点为根,结果直到心态爆炸都没做出来). 想到这一点,这题就很简单了. 具体 设\(p_i\)为从\(i\)到根路径上的最小值,考虑一个黑点\(y\)对于\(x\)号点的贡献. 显然这一贡献就是将\(x\)的答案向\(y\)到\(LCA(x,y)\)路径上的最小值取\(min\). 而由于\(LCA(x,y)\)到根路径上的最小值也是\(x\)到根路径上的最小…
树形\(DP\) 考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率. 然后我们就能发现这个东西直接转移是几乎不可能的. 所以我们在转移时要开个辅助数组\(s_{op,x,y,k}\),其中\(op\)用于滚存,表示最长链为\(x\),次长链为\(y\),子节点子树内直径长度小于等于\(k\)的概率. 然后我们只要枚举子节点,再枚举子节点子树内的链长,就可以采用刷表法简便地\(DP\)转移了. 这样看似\…
可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作,先询问当前是否连通,若联通再询问\(t\)次操作前是否连通. 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typename Ty,typename... Ar>…
转化题意 这题目乍一看十分玄学,完全不可做. 但实际上,假设我们在原序列从小到大排序之后,选择开的宝箱编号是\(p_{1\sim Z}\),则最终答案就是: \[\sum_{i=1}^Za_{p_i}(p_{i+1}-p_i)\] 其中\(p_{Z+1}=n+1\). 有了这个式子,就可做了许多. 暴力\(DP\) 我们设\(f_{i,j}\)为在前\(i\)个宝箱中选择了\(j\)个宝箱的最小代价. 枚举一个转移点\(k\)表示上个选择的宝箱,就可以得到: \[f_{i,j}=f_{k,j-1…
莫比乌斯反演 血亏! 比赛时看到这题先写了个莫比乌斯反演,然后手造了几组数据和暴力对拍的时候发现,居然答案就是\(nm\)... 吐槽数据范围太小... 下面给上出题人对此题的解释: 原式的物理意义,就是从坐标原点(0,0),用每一种合法的斜率,穿过坐标[1~n,1~m]的方阵中的整点的个数,总数即 n*m. 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<type…
暴力\(DP\) 这题做法很多,有\(O(n^2)\)的,有\(O(n^2logn)\)的,还有徐教练的\(O(nlogn)\)的,甚至还有\(bzt\)的二分+线段树优化建图的费用流. 我懒了点,反正数据范围这么小,就写了个\(O(n^2)\)的暴力\(DP\). 先将两个数组都排序,一个显然的性质,就是人选择钥匙时不可能相交. 所以我们设\(f_{i,j}\)表示前\(i\)个人选择了前\(j\)把钥匙时所用最大时间的最小值. 转移也很简单. 代码 #include<bits/stdc++.…
\(IDA^*\) 说实话,这道题我一开始没想出正解,于是写了一个\(IDA^*\)... 但神奇的是,这个\(IDA^*\)居然连字符串长度分别为\(2500,4000\)的数据都跑得飞快,不过数据发下来之后我测了一下只有45分. 就在不断优化\(IDA^*\)的过程中,我突然就想出了正解的做法,看来以后遇事不决先暴力. \(DP\)求解第一个询问 考虑一个\(DP\),我们设\(f_{i,j}\)表示当前在第一个字符串中是第\(i\)位,第二个字符串中是第\(j\)位的最小步数. 若记录\(…
数位\(DP\) 首先考虑二进制数\(G(i)\)的一些性质: \(G(i)\)不可能有连续两位第\(x\)位和第\(x+1\)位都是\(1\).因为这样就可以进位到第\(x+2\)位.其余情况下,这个\(G(i)\)必然合法. 对于一对\(x,y\)满足\(x<y\),则\(G(x)<G(y)\). 则根据这些性质,我们就可以考虑数位\(DP\). 按照一般数位\(DP\)的套路,我们把对\(a\sim b\)的\(DP\)转化为对\(1\sim a-1\)和\(1\sim b\)的两个\(…
暴力\(DP\) 考虑暴力\(DP\),我们设\(f_{i,j}\)表示当前覆盖长度为\(i\),上一次折叠长度为\(j\)的方案数. 转移时需要再枚举这次的折叠长度\(k\)(\(k\ge j\)),转移方程如下: \[f_{i+2k-j,k}+=f_{i,j}\] 对于左.右两边,根据不同的初始化\(DP\)两遍. 统计时枚举两边覆盖长度计算即可. 优化\(DP\) 实际上,我们可以把这个\(DP\)拆成两个数组,一个表示左端点在\(x\)位的方案数,另一个表示右端点在\(y\)位的方案数.…
树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再考虑非,即先转移,再交换\(f_{x,0,0}\)和\(f_{x,1,1}\),\(f_{x,1,0}\)和\(f_{x,0,1}\). 这样一来,转移方程如下: \[f_{x,i1\&i2,j1\&j2}=\sum f_{x,i1,j1}*f_{son,i2,j2}\] 然后,在转移结束,交…