# 决策树 import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.cross_validation import train_test_split from sklearn.metrics import classification_report from sklearn.pipeline import Pipeline from sklearn.grid_search import Gr…
目录 muduo网络库学习笔记(四) 通过eventfd实现的事件通知机制 eventfd的使用 eventfd系统函数 使用示例 EventLoop对eventfd的封装 工作时序 runInLoop() queueInLoop() wakeup() handleRead() doPendingFunctors() 总结 muduo网络库学习笔记(四) 通过eventfd实现的事件通知机制 上篇文章为EventLoop添加了一个定时器Fd,为EventLoop增加了3个接口:runAfter(…
# 决策树 import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.cross_validation import train_test_split from sklearn.metrics import classification_report from sklearn.pipeline import Pipeline from sklearn.grid_search import Gr…
文章目录 1.ID3及C4.5算法基础 1.1 计算香农熵 1.2 按照给定特征划分数据集 1.3 选择最优特征 1.4 多数表决实现 2.基于ID3.C4.5生成算法创建决策树 3.使用决策树进行分类 4.存储决策树 通过决策树原理及相关概念细节我们知道,决策树的学习算法主要包括3个步骤:特征选择.决策树生成算法.决策树剪枝,我们按照这个思路来一一实现相关功能. 本文的实现目前主要涉及特征选择.ID3及C4.5算法.剪枝及CART算法暂未涉及,后期补上. 1.ID3及C4.5算法基础 前面文章…
# Extracting features from categorical variables #Extracting features from categorical variables 独热编码 from sklearn.feature_extraction import DictVectorizer onehot_encoder=DictVectorizer() instance=[{'city':'New York'},{'city':'San Francisco'}, {'city…
一.感知器 感知器是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的,其灵感来自于对人脑的仿真,大脑是处理信息的神经元(neurons)细胞和链接神经元细胞进行信息传递的突触(synapses)构成. 一个神经元可以看做将一个或者多个输入处理成一个输出的计算单元.一个感知器函数类似于一个神经元:它接受一个或多个输入,处理 他们然后返回一个输出.神经元可以实时,错误驱动的学习,神经元可以通过一个训练样本不断的更新参数,而非一次使用整套的数据.实时学习可能有效的处理…
一.引入相关库 %matplotlib inline import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties font=FontProperties(fname=r'c:/windows/fonts/msyh.ttf',size=10) 二.一元回归范例 def runplt(): plt.figure() plt.title(u'披萨价格与直径数据',fontproperties=fo…
# 逻辑回归 ## 逻辑回归处理二元分类 %matplotlib inline import matplotlib.pyplot as plt #显示中文 from matplotlib.font_manager import FontProperties font=FontProperties(fname=r"c:\windows\fonts\msyh.ttc", size=10) import numpy as np plt.figure() plt.axis([-6,6,0,1]…
# K的选择:肘部法则 如果问题中没有指定 的值,可以通过肘部法则这一技术来估计聚类数量.肘部法则会把不同 值的成本函数值画出来.随着 值的增大,平均畸变程度会减小:每个类包含的样本数会减少,于是样本离其重心会更近.但是,随着 值继续增大,平均畸变程度的改善效果会不断减低. 值增大过程中,畸变程度的改善效果下降幅度最大的位置对应的 值就是肘部. import numpy as np import matplotlib.pyplot as plt %matplotlib inline #随机生成一…
# 用PCA降维 #计算协方差矩阵 import numpy as np X=[[2,0,-1.4], [2.2,0.2,-1.5], [2.4,0.1,-1], [1.9,0,-1.2]] np.cov(np.array(X).T) #计算特征向量 import numpy as np w,v=np.linalg.eig(np.array([[1,-2],[2,-3]])) print w,v # 降维可视化 %matplotlib inline import matplotlib.pyplo…