codevs——1008 选数】的更多相关文章

1008 选数 2002年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34.…
时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34. 现在,要求你计算出和为素数共有多少种. 例如上例,只有一种的和为素数:…
1008 选数 2002年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=38 3+12+1…
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34. 现在,要求你计算出和为素…
2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Status][Discuss] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n…
#include<cstdlib> #include<cstdio> #include<iostream> #include<cmath> #include<cstring> using namespace std; ],n,k,tot,sum,a[],c[]; bool pd(int y) { ) return false; ;i<=sqrt(y)+;i++) ) return false; return true; } void sea…
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=3930 Description  我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮…
2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[i]为gcd为i的选数情况数,有F[i]=(r/i-l/i)^n-F[i*2]-F[i*3]-......-(r/i-l/i) 这个是除掉全部都一样的情况. 然后如果k在[L,R]之内的话答案要加一,也就是全部都是k的这种情况是可以的. #include<cstring> #include<…
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首先就把区间缩小一下 这样变成了\(gcd=1\) 设\(f(i)\)表示\(gcd\)恰好为\(i\)的方案数 那么,要求的是\(f(1)\) 设\(g(x)=\sum_{d|x}f(d)\) 所以\(g(x)\)表示\(x|gcd\)的方案数 这个不是很好求吗? 所以一波莫比乌斯反演 \[f(1)…
[BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个…
3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status][Discuss] Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简…
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了. 分析: 我…
[BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助. 你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. Input 输入一行,包含4个空格分开的正整数…
题目链接:选数 这一题水过去就行了,我们这里用next_permutation去生成各种排列,有一个注意点,我会在代码中标注. #include<bits/stdc++.h> using namespace std; bool isprime(int x){ int q=sqrt(x+0.5); for(int i=2;i<=q;i++){ if(x%i==0){ return false; } } return true; } int main(){ int n,k; scanf(&q…
数论/莫比乌斯反演/快速mu前缀和 比较容易想到令f[x]表示gcd=x的方案数,令g[x]表示x|gcd的方案数. 那么有$ g(d)=\sum_{d|n} f(n)$,根据莫比乌斯反演,有$f(d)=\sum_{d|n} g(n)*\mu (\frac{n}{d})$ 我一开始想的是算出g以后,倒序枚举 i ,然后枚举 i 的倍数,递推出所有的f[i]…… 因为g比较好算嘛……快速幂一下什么的…… 然而$10^9$直接吓傻我. Orz PoPoQQQ 快速求出mu的前缀和,$10^9$也照样…
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的矩阵阵后,那么题意就是不能选相邻的点,求方案数.可以知道行不超过18,列不超过11,然后状压dp即可. 发现5在这个矩阵中没有出现,于是可以在构造a[1][1]=5的矩阵,利用乘法原理求出相乘.同样地,构成a[1][1]为没有出现的数的矩阵,相乘. 代码: #include<cstdio> #in…
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. Input 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. O…
题目链接:选数 这种SB题我都Wa飞了,彻底没救系列- 首先,我们可以发现1,如果我们选了两个不同的数,那么它们的\(\gcd\)不会超过\(r-l+1\).于是,我们可以设一个\(f_i\)表示任取\(n\)个数,它们的\(\gcd\)为\(ik\)的方案数,最后我们要的答案就是\(f_1\).我们考虑容斥一下,在求\(f_i\)的时候,先把\([l,r]\)中是\(ik\)倍数的数全部拿出来,然后任意选\(n\)个,这样选出来的数他们的\(\gcd\)一定是\(ik\)的倍数.于是,我们只需…
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数, 如何求出\({1,2,3...n}\) 的满足上述约束条件的子集的个数(只需输出对 \(10^{9}+1\) 取模的结果),现在这个问题就交给你了. 输入格式: 只有一行,其中有一个正整数 \(n\) 30…
2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Status][Discuss] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n…
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的\(N\)个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助. 你的任务很简单,小\(z\)会告诉你一个整数\(K\),你需要回答他最大公约数刚好为\(K\)的选取方案有多少个.由于方案数较大,你只需要输出其除以\(1000…
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. Input 输入一行,包含4…
题目描述 已知 n个整数x1​,x2​,…,xn​,以及1个整数k(k<n).从nn个整数中任选kk个整数相加,可分别得到一系列的和. 例如当n=4,k=3,4个整数分别为3,7,12,19时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=3 3+12+19=34 现在,要求你计算出和为素数共有多少种. 例如上例,只有一种的和为素数:3+7+19=29 输入输出格式 输入格式: 键盘输入,格式为: n,k(1≤n≤20,k<n) x1​,x2​,…,xn…
Portal Description 给出\(n,k,L,R(\leq10^9)\),求从\([L,R]\)中选出\(n\)个可相同有顺序的数使得其gcd为\(k\)的方案数. Solution 记\(f(x)\)表示gcd为\(x\)时的方案数,那么我们要求的就是\(f(k)\).设\(F(x)=\sum_{x|d}f(d)\)表示gcd为\(x\)的倍数时的方案数,即\(F(x)=(⌊\dfrac{R}{x}⌋-⌊\dfrac{L-1}{x}⌋)^n\).于是我们得到 \[\begin{al…
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Luogu)https://www.luogu.org/problemnew/show/P3172 (BZOJ)http://www.lydsy.com/JudgeOnline/problem.php?id=3930 题目大意: 给定N,M,L,R,从区间[L,R]内选出N个整数使得它们的gcd恰好为m…
2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 831  Solved: 487 [Submit][Status][Discuss] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的全部满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜欢这样的具有枚举性 质的题目.于是把它变成了下面问题:对于随意一个正整…
50. [NOIP2002] 选数 ★   输入文件:choose.in   输出文件:choose.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述]: 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34.现在,要求…
洛谷 P1036 选数 洛谷传送门 JDOJ 1297: [NOIP2002]选数 T2 JDOJ传送门 Description ​ 已知 n 个整数 x1,x2,-,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34. 现在,要求你计算出和为素数共有多少种. 例如上例,只有一…
「CQOI2015」选数 题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入输出格式 输入格式: 输入一行,包含4个空格分开的正整数,…