算法起步之Kruskal算法】的更多相关文章

原文:算法起步之Kruskal算法 说完并查集我们接着再来看这个算法,趁热打铁嘛.什么是最小生成树呢,很形象的一个形容就是铺自来水管道,一个村庄有很多的农舍,其实这个村庄我们可以看成一个图,而农舍就是图上的每个节点,节点之间有很多的路径,而铺自来水管道目的就是为了让每家都能用上自来水,而至于自来水怎么铺就不关心了,而铺管子的人就会想如何才能最生材料,那么最省材料的一条路径就是我们这个图的最小生成树.而如何去构建一个最小生成树呢?这个就用到了我们之前说的贪心策略.这里的觉得点就是一直寻找安全边,所…
原文:算法起步之Prim算法 prim算法是另一种最小生成树算法.他的安全边选择策略跟kruskal略微不同,这点我们可以通过一张图先来了解一下. prim算法的安全边是从与当前生成树相连接的边中选择一条最短的一条,并且该边是应是生成树与生成树外一点的连接. 所以我们prim算法用汉字描述的过程应为:1初始化2构造最小优先队列,将所有节点都加入到最小优先队列中,所有节点的key设置为无穷大,开始节点设置成0.3循环,直到队列为空{取出key值最小的节点加入到生成树中,变量与key相连接的边,看是…
原文:算法起步之Bellman-Ford算法 从这篇开始我们开始介绍单源最短路径算法,他是图算法之一,我们前面说的贪心,图的遍历,动态规划都是他的基础,单源最短路径其实说的就是图中节点到节点的最短路径.就像我们使用百度地图从哪到哪一样,找出最近的距离,而单源最短路径问题不只是两点之间的路径,他有很多的变形,像单目的地最短路径问题,单节点对最短路径问题,所有节点对最短路径问题,最短路径的最优子结构问题. 在介绍这类算法之前我们先规定节点的基本属性,我们规定节点都有一个key值,key值记录的是开始…
原文:算法起步之Dijkstra算法 友情提示:转载请注明出处[作者 idlear    博客:http://blog.csdn.net/idlear/article/details/19687579] Dijkstra算法是解决带权重有向图上的单源最短路径问题,必须路径值都为正数.如果实现方式合适的话,他的运行时间要低于我们之前介绍的Bellman-Ford算法的运行时间.如果介绍Dijkstra算法的过程你会发现他其实跟我们直接介绍的prim算法非常的相似.他们都是维护一个最小优先队列,最小…
数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中.不妨换个思路,为何不一开始就将所有边中权值最小的边取出来搭建二叉树?这里说的最小权值是全局的最小权值,而Prim说的最小权值,是已经访问过的顶点的周围的边中的最小权值,这个范围当然比全部边要小. 于是需要对边按照权值升序排列,由于每次取出的最小权值分布在图的各个地方,一开始各条边可能并不是相连的,…
Kruskal算法用于计算一个图的最小生成树.这个算法的过程例如以下: 依照边的权重从小到达进行排序 依次将每条边添加到最小生成树中,除非这条边会造成回路 实现思路 第一个步骤须要对边进行排序,排序方法在之前的章节中已经介绍了非常多,能够使用优先级队列进行实现,也能够使用归并排序进行实现,这里採用归并排序. 第二个步骤须要推断是否会造成回路.假设添加一条边会形成回路,那么这条边在添加之前,它两端的顶点必然是可以连通的.因此,在算法中使用并查集实现高效的推断. 代码 import java.uti…
目录 1 问题描述 2 解决方案 2.1 构造最小生成树示例 2.2 伪码及时间效率分析 2.3 具体编码(最佳时间效率)   1 问题描述 何为Kruskal算法? 该算法功能:求取加权连通图的最小生成树.假设加权连通图有n个顶点,那么其最小生成树有且仅有n - 1条边. 该算法核心思想:从给定加权连通图中,选择当前未被选择的,不能形成回路且权值最小的边,加入到当前正在构造的最小生成树中. 2 解决方案 2.1 构造最小生成树示例 下面请看一个具体示例: 给定一个条边,按照从小到大排序依次为:…
什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树是{cf, fa, ab} 3条边 Kruskal算法 用到上一篇中介绍的不相交集合(并查集) 首先,定义V是端点的集合,E是边的集合,A为要求的最小生成树集合 初始A为空集合,每个端点都作为单独的不相交集合 将所有边根据其权重进行排序 对每条边(v1, v2),如果其两个端点数据不同的不相交集,则…
最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树. 普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边. 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点…
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以把边上的权值解释为线路的造价.则最小生成树表示使其造价最小的生成树. 构造网的最小生成树必须解决下面两个问题: 1.尽可能选取权值小的边,但不能构成回路: 2.选取n-1条恰当的边以连通n个顶点: MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集.若(u,v)是一条具有最小权值的…