题目链接:hdu_5354_Bipartite Graph 题意: 给你一个由无向边连接的图,问对于每一个点来说,如果删除这个点,剩下的点能不能构成一个二分图. 题解: 如果每次排除一个点然后去DFS判是否为二分图,那肯定会超时. 我们可以知道,删除其中一个点,对其他好多的边都不会有影响,所以我们可以将其他点的边先加进去,然后来判断一个区间的点是否可行. 这就和cdq分治的思想差不多.我们令cdq(l,r)表示解决l到r区间的答案.然后通过并查集来判断已经加入的点是否为二分图. 并查集在判二分图…
经典动态二分图问题. 考虑solve(l,r)分治成l,mid和mid+1,r.先将区间[mid+1,r]中的点全部加入图中,若此时存在奇环则ans[l..mid]全部为0,否则递归到左边. 递归完左边后将右边的点全部删去,左边点全部加入,按同样的方法处理右边. 判断奇环使用可撤销带权并查集,注意多组数据不要用memset. #include<cstdio> #include<algorithm> #include<cstring> #define rep(i,l,r)…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5354 题意:求删去每个点后图是否存在奇环(n,m<=1e5) 解法:很经典的套路,和这题一样:http://www.cnblogs.com/spfa/p/7358672.html CDQ套并查集. 这题最开始是看了南神的代码才懂的,http://blog.csdn.net/hdu2014/article/details/47450709    因为要判断每一个点,而且一旦一个点之外的几个点形成了奇环…
题目链接:http://poj.openjudge.cn/practice/C15C/ 题意:n 点 m 边 k 天.每条边在某一天会消失(仅仅那一天消失).问每一天有多少对点可以相互到达. 解法:开始不会做,参考的YYN的题解:http://blog.csdn.net/u013368721/article/details/45725181 学习了这种CDQ加并查集的做法,可以说是非常的巧妙了.复杂度可以保证在:O(KlogklogK)的范围. //CDQ + DSU #include <bit…
4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hnoi2016第一题类似的偏序关系,一样做. 线段树分治 数据结构题中如果使用对时间cdq分治,要求每个操作独立,不能很好的处理撤销(删除)操作. 采取线段树区间标记的思想 对于一个操作,它的存在时间是\([l,r]\) 我们模仿线段树打标记的过程进行分治,\(cdq(l,r,S)\)表示当前处理时间\…
传送门 cdq分治好题. 对于一条边,如果加上它刚好连通的话,那么删掉它会有两个大集合A,B.于是我们先将B中禁用的边连上,把A中禁用的边禁用,再递归处理A:然后把A中禁用的边连上,把B中禁用的边禁用. 这样递归下去用并查集维护答案就行了. 另外,当向上回溯时需要撤销之前的操作,因此需要用栈维护并查集历史信息. 代码: #include<bits/stdc++.h> #define N 100005 #define M 200005 using namespace std; inline in…
[CF603E]Pastoral Oddities 题意:有n个点,依次加入m条边权为$l_i$的无向边,每次加入后询问:当前图是否存在一个生成子图,满足所有点的度数都是奇数.如果有,输出这个生成子图中边权最大的边的权值最小可能是多少. $n\le 10^5,m\le 10^6,l_i\le 10^9$ 题解:可以证明如果存在一个生成子图满足所有点度数都是奇数,当且仅当所有连通块都有偶数个点.并且可以知道加边一定不会使答案更劣.正解有三种:1.LCT维护最小生成树:2.cdq分治(类似整体二分)…
题意 判断一个存在哈密顿回路的图是否是平面图. n≤200,m≤10000n\le200,m\le10000n≤200,m≤10000 题解 如果一定存在一个环,那么连的边要么在环里面要么在外面.那么把在同侧会矛盾的边之间连边,如果是一个二分图就是平面图. 有问题的是边数是O(m2)O(m^2)O(m2)的.但是可以发现当m>n∗3−6m>n*3-6m>n∗3−6的时候一定形成不了平面图.所以就判一下,如果小于等于就O(m2)O(m^2)O(m2)做. 证明:先画出一条环,有nnn条边,…
传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的区间分别维护信息. 最后按线段树从上到下再从左到右的遍历方式一起统计答案. 这道题可以按时间建树,每次相当于在一段区间里增加边. 最后统计二分图就行了,这个问题可以用并查集解决. 然而我们回溯上去的时候是需要撤销操作的,因此需要用并查集按秩合并. 代码: #include<bits/stdc++.h…
BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. Input 输入数据的第一行是三个整数n,m,T. 第2行到第m+1行,每行4个整数u,v,start,end.第i+1行的四个整数表示第i条边连接u,v两个点,这条边在start时刻出现,在第end时刻消失. Output 输出包含T行.在第i行中,如果第…
[CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染成颜色b,但如果染色后不能满足所有颜色相同的边内部都是二分图就不染.问你每次是否能染成功. $n,m,q\le 5\times 10^5,k\le 50$ 题解:本题看起来要求在线,实质上完全可以离线. 如果没有不染这种操作的话,那么直接线段树按时间分治+并查集按秩合并就完事了.但如果有呢?我们先假…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem Description 随着杭州西湖的知名度的进一步提升,园林规划专家湫湫希望设计出一条新的经典观光线路,根据老板马小腾的指示,新的风景线最好能建成环形,如果没有条件建成环形,那就建的越长越好. 现在已经勘探确定了n个…
题目大意 给你一张\(n\)个点\(m\)条边的无向图,问删去每个点后,原图是不是二分图. \(n,m\leq 100000\) 题解 一个图是二分图\(\Longleftrightarrow\)该图不存在奇环 可以用并查集,维护每个点到根的距离 如果删除\(x\)点,就要把所有不与\(x\)连接的边加入并查集 考虑分治,对于区间\([l,r]\),我们先把与\([l,mid]\)链接且不与\([mid+1,r]\)链接的边加入并查集,然后递归处理\([mid+1,r]\).另一边的情况类似.…
4025: 二分图 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2191  Solved: 800[Submit][Status][Discuss] Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. Input 输入数据的第一行是三个整数n,m,T. 第2行到第m+1行,每行4个整数u,v,start,end…
bzoj 4025 二分图 [题目大意] 有n个点m条边,边会在start时刻出现在end时刻消失,求对于每一段时间,该图是不是一个二分图. 判断二分图的一个简单的方法:是否存在奇环 若存在奇环,就不是二分图. 假设加入一条u->v的边,u,v已经联通,怎么知道是否是一个奇环呢?只需要知道u,v之间的距离就行了.距离为偶数则是一个奇环. 路径?加边?删边? 很容易就想到是LCT. 维护u->v的距离. 每次加入一条边,就判断是否先前已经联通,否,则家父,若是,就判断u,v之间的距离. 假若已经…
之前学了一下线段树分治,这还是第一次写.思想其实挺好理解,即离线后把一个操作影响到的时间段拆成线段树上的区间,并标记永久化.之后一块处理,对于某个节点表示的时间段,影响到他的就是该节点一直到线段树根的所有操作.(语死早)这样可以把操作的插入和删除改为只有插入. 具体到这题,由于并查集没法删除边,我们考虑线段树分治.之后要考虑的问题就是如何用并查集判断是否为二分图,也即是否含奇环.假设现在图中有一个偶环,若给偶环两点加了一条边,可以发现无论去掉原偶环上哪一条边都不会改变新出现环的奇偶性.于是我们只…
Mr. Kitayuta's Colorful Graph 并查集不仅可以用于一维,也可以用于高维. 此题的大意是10W个点10W条边(有多种颜色),10W个询问:任意两个节点之间可以由几条相同颜色的路径连通. 这里要用到高维的并查集,定义fa[u][c]=v表示节点u的颜色c属于集合v,由于无法开出这么大的二维数组,且实际边的数量很少,可以考虑使用map. 每次加边的时候,如果该节点u的颜色c不属于任何集合,则将u作为当前集合的根.每次加入一条边,相当于合并两个不同的集合. 询问的时候可以暴力…
题目如下: A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root. Input Specificat…
/* 思维难度几乎没有, 就是线段树分治check二分图 判断是否为二分图可以通过维护lct看看是否链接出奇环 然后发现不用lct, 并查集维护奇偶性即可 但是复杂度明明一样哈 */ #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #include<iostream> #define f1 first #define f2 second #define…
Description Input Output Sample Input 4 5 1 2 2 3 3 4 4 1 2 4 3 1 5 2 2 3 2 1 2 Sample Output Connected Disconnected Connected HINT N<=100000 M<=200000 K<=100000 Solution 线段树分治,根据询问把每条边存在的时间区间拆成几个区间,然后覆盖到线段树上,最后$DFS$一遍线段树.用带撤销的并查集维护一下连通块个数,到线段树叶子…
题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内,那就把它用并查集并起来.最后对于一个询问,直接用并查集找就好了. 但是因为有撤销操作,所以在并查集合并的时候,我们将需要合并的两个点放进栈中,最后栈序撤销,所以只能考虑按秩合并而不能路径压缩. #include <map> #include <vector> #include <…
题目链接:http://poj.org/problem?id=3310 思路:首先是判断图的连通性,以及是否有环存在,这里我们可以用并查集判断,然后就是找2次dfs找树上最长直径了,并且对树上最长直径上的点进行标记,于是根据题意我们可以发现,如果这个图是“caterpillar”的话,那么他所有的边要么两端都在树上最长直径上,要么就是其中一端在,于是我们可以再次dfs进行判断就可以了. #include<iostream> #include<cstdio> #include<…
3237: [Ahoi2013]连通图 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1736  Solved: 655[Submit][Status][Discuss] Description Input Output Sample Input 4 5 1 2 2 3 3 4 4 1 2 4 3 1 5 2 2 3 2 1 2 Sample Output Connected Disconnected Connected HINT N<=1000…
题目链接  Mr. Kitayuta's Colorful Graph 把每种颜色分开来考虑. 所有的颜色分为两种:涉及的点的个数 $> \sqrt{n}$    涉及的点的个数 $<= \sqrt{n}$ 对于第一种颜色,并查集缩点之后对每个询问依次处理过来若两点连通则答案加一. 对于第二种颜色,并查集缩点之后对该颜色涉及的所有点两两之间判断是否连通, 若连通则另外开一个$map$记录答案. 最后把两个部分的答案加起来即可. 细节问题  由于每种颜色处理完之后并查集都要重新初始化,对于第一种…
Mr. Kitayuta's Colorful Graph Mr. Kitayuta has just bought an undirected graph consisting of n vertices and medges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi. Mr. Kitayut…
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2497 题意:给定一些点和边的关系,判断S点是否在所构成无向图的所有环里. 思路:用并查集将所有(除去S及与 S有关的点)有关系的点放在一个集合里,若此时图中还存在环,那么一定不包含S. #include <stdio.h> #include <string.h> ; int f[maxn],n; int find(int x) {…
★ Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求 一条路径,使得路径上最大边和最小边的比值最小.如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出这个 比值,如果需要,表示成一个既约分数. 备注: 两个顶点之间可能有多条路径. 体现了并查集实际作用的一道题,也就是判图连通性.几句总结: 最小化或最大化一个分数时通常可以二分,但是也可以去设法最大or最小化分子分母.…
传送门 解题思路 可以离线,然后确定每个边的出现时间,算这个排序即可.然后就可以线段树分治了,连通性用并查集维护,因为要撤销,所以要按秩合并,时间复杂度\(O(nlog^2 n)\) 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<vector> using namespace s…
正题 题目链接:https://darkbzoj.tk/problem/4025 题目大意 \(n\)个点\(m\)条边,每条边会在一个\(T\)以内的时间段内出现,对于任意一个\(T\)以内的时刻求图是否是一个二分图. \(1\leq n,T\leq 10^5,1\leq m\leq 2\times 10^5\) 解题思路 插边就暴力插到线段树的对应区间位置,然后考虑怎么判二分图. 可以用扩展域并查集,但是因为要撤回所以不能路径压缩,要用按秩合并. 时间复杂度\(O(n\log^2n )\)…
显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销,所以遇到一个要被撤销的删除操作时,直接求出去掉k条边后的MST即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #…