<A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: (1)linear (2)polynomial (3)radial basis function (4)sigmoid 2. Scaling: Scaling对于SVM非常重要,可以避免某个维度上的值很大,会主导那些值很小的维度.另一个好处是避免复杂的数值计算.另外需要注意的是,在对training data和…
<A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: (1)linear (2)polynomial (3)radial basis function (4)sigmoid 2. Scaling: Scaling对于SVM非常重要,可以避免某个维度上的值很大,会主导那些值很小的维度.另一个好处是避免复杂的数值计算.另外需要注意的是,在对training data和…
零.简介 一般认为,SVM比神经网络要简单. 优化目标:…
SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习.分类和预测(有时也叫回归)的一种方法,能解决神经网络不能解决的过学习问题.作者以为,类似的根据样本进行学习的方法还有基于案例的推理(Case-Based Reasoning),决策树归纳算法C4.5等,以后将详细阐述这两种方法. (2)过学习问题:训练误差过小导致推广能力下降,即真实风险的增加. (…
支持向量机(support vector machine, 以下简称svm)是机器学习里的重要方法,特别适用于中小型样本.非线性.高维的分类和回归问题.本篇希望在正篇提供一个svm的简明阐述,附录则提供一些其他内容.(以下各节内容分别来源于不同的资料,在数学符号表述上可能有差异,望见谅.) 一.原理概述 机器学习的一大任务就是分类(Classification).如下图所示,假设一个二分类问题,给定一个数据集,里面所有的数据都事先被标记为两类,能很容易找到一个超平面(hyperplane)将其完…
Support Vector Machines for classification To whet your appetite for support vector machines, here’s a quote from machine learning researcher Andrew Ng: “SVMs are among the best (and many believe are indeed the best) ‘off-the-shelf’ supervised learni…
之前的SVM非常的hard,要求每个点都要被正确的划分,这就有可能overfit,为此引入了Soft SVM,即允许存在被错分的点,将犯的错放在目 标函数中进行优化,非常类似于正则化. 将Soft SVM进行对偶转化后,发现与之前的hard SVM非常的像,只是其中一个系数多了个上界. 通过对阿尔法值的范围的讨论,将SVs分成三类:边界外的.free vector.bounded vector 最后讲的是模型的选择.需要注意的是,我们可以根据support vector的数量来确定cross v…
最近读了这本IBM出的<A Practical Guide to Distributed Scrum>(分布式Scrum的实用指南),书中的章节结构比较清楚,是针对Scrum项目进行,一个阶段一个阶段来介绍的,既包含Scrum的做法,也包含了分布式团队可能遇到的问题和一些建议.这里我先根据书籍目录,做个大致的介绍和提要,最后做一个自己的总结. 一.提要 Chapter 1 The Evolution of Scrum Core Principles of Scrum - 介绍Scrum框架和一…
Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summary of Kernel Models Map of Linear Models Map of Kernel Models possible kernels: polynomial, Gaussian,..., your design (with Mercer’s condition), coup…
Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support Vector Machine Reasons behind Large-Margin Hyperplane Summary…