C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Recently Pashmak has been employed in a transportation company. The…
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S从右…
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3…
1649:[例 2]2^k 进制数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以下条件: 1.r 至少是个 2 位的 2k 进制数. 2.作为 2k 进制数,除最后一位外,r 的每一位严格小于它右边相邻的那一位. 3.将 r 转换为 2 进制数 q 后,q 的总位数不超过 w. 在这里,正整数 k 和 w 是事先给定的. 问:满足上述条件的不同的 r 共多少个? [输入] 输入…
题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k〈w≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个"0"或"1"组成),S对应于上述条件(3)中的q…
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3…
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S从右起划分为…
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q…
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include<cstring> #include<cstdio> using namespace std; ][][],tot[],mmax; int pow(int a,int b) { ,with=a; while(b) { ) ans*=with; with*=with; b>>=;…
;============================ ;1位16进制数到ASCII码转换 ; { X+30H (0≤X≤9) ;Y= { ; { X+37H (0AH≤X≤0FH) DATAS SEGMENT Num db ASCII db ? DATAS ends CODES SEGMENT ASSUME CS:CODES, DS:DATAS START: mov AX,DATAS mov DS,AX mov al,Num ;将带操作的字符放入al中 and al,0FH ;求与 运算…
我们知道任意进制转换为十进制,都是乘以基数的多少次方,然后相加: 十进制转换为任意进制,都是除以基数,然后倒着取余数: 所以这里是用十进制数中转,实现任意进制数的转换 #include<iostream> #include<algorithm> #include<math.h> #include<stack> #define ll long long #define M 0x3f3f3f3f3f using namespace std; ll change1…
[codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<w≤30000)是事先给定的.问:满足上述条件的不同的r共有多少个?我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个"0"或"1"组成),S对应…
设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个"0"或"1"组成),S对应于上述条件(3)中的q…
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P1066: 首先普及一下知识:一个2^k进制n位数转换成2进制数时最多有n*k位:一个n进制数的每位数字属于集合{0,1,……,n-1}. 这样我们就知道给出w.k后r的位数最多为wei=w/k向上取整,但要注意,如果w%k有余,则r在最高位上不能把集合{0,1,……,n-1}的数都取一遍. 又知道r的位…
题目描述 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 例: 1010230 是有效的7位数 1000198 无效 0001235 不是7位数, 而是4位数. 给定两个数N和K, 要求计算包含N位数字的有效K-进制数的总数. 假设2 <= K <= 10; 2 <= N; 4 <= N+K <= 18. 输入 两个十进制整数N和K 输出 十进制表示…
题目要求: 输入一个正整数m,输出m位2进制的所有取值情况,从小到大输出,每个输出结果用换行符分割. 解题思路: 通过递归调用,从第1个到第m个数组元素分别置0和置1,然后当从1到m所有的元素都置0或者置1之后,进行输出. 程序代码: #include<iostream> using namespace std; int m = 0; void fun(int *a,int n) { if(n>=m) { for(int i=0;i<n;i++) { cout<<a[i…
题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这题需要高精度,以下省略此声明 . 如果你对数学不感兴趣/喜欢写DP/(不想虐待自己),这里是DP做法. 首先,我们可以发现,这个数最多有w/k位(向上取整),如下图所示: 那么,我们就可以以这个特性做DP啦. 设f[i][j]表示枚举到第i位(指2^k进制下的),最后一位数为j. f[i][j] =…
思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n位数 *index 计数值 **/ private function num(ch:Array,n:int,index:int):void { if(index==n) { trace(ch); return; } for(var i:int=0;i<10;i++) { ch[index]=i; n…
原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩余不足以划成\(k\)位)的一段,这样使得每一位的枚举上界都是\(2 ^ k - 1\),然后我们枚举几位数. \(2\)位数 十位为\(1\),显然个位只能为\(2\sim 2 ^ k - 1\),共\(2 ^ k - 2\)种. 十位为\(2\),显然个位只能为\(3\sim 2 ^ k - 2…
发现自己推得组合数好像不太一样 先把这个复杂的柿子写一遍 \[\sum_{i=2}^{\left \lfloor\frac{n}{k}\right \rfloor}C_{2^k-1}^{i}+\sum_{i=1}^{2^{n\text{ } \text{mod} \text{ }k}-1}C_{2^k-1-i}^{\left \lfloor\frac{n}{k}\right \rfloor}\] 感觉这个柿子非常蛇皮 但是非常好求啊 由于\(2^k-1\)非常小,最大仅仅是\(511\),所以我…
洛谷P1066:https://www.luogu.org/problemnew/show/P1066 思路 挺难的一道题 也很复杂 满足题目要求的种数是两类组合数之和 r的最多位数m为 w/k(当w mod k=0 时) w/k+1(当 w mod k=1 时) First: 位数为2~m的种数 即从2k-1中不重复地取i个的组合数(只取到2k-1是因为2k会进位) 即C(2k-1,2)+C(2k-1,3)+...+C(2k-1,m) Second: 位数为m+1的种数 因为要每个数严格小于左…
题目 https://ac.nowcoder.com/acm/contest/907/D 做法 \((x)_k\)定义编号,如果\(a+b\)加到一起能进一位,\(a+b\rightarrow 1+(a+b-k)=a+b-(k-1)\),故\(d(a_{l,r})=\sum\limits_{i=l}^r a_i\% k-1\) 但我们发现\(k-1\)这一块缺失了,显然为\(0\)当且仅当区间均为\(0\),其他情况得出\(0\)的时候实际结果为\(k-1\) \(b=0\):全\(0\)区间个…
分两种情况:$k|n$和$k$不整除$n$ 如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块:所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C_{2^k-1}^{x}$ 所以整除时答案是$\sum_{i=2}^{n/k} \space C_{2^k-1}^{i}$ 如果$k$不整除$n$,那么一共会分成$\lfloor \frac{n}{k} \rfloor+1$块,而最后一个不完整的块只有$n\text{mod} k$位,能选择的数还是…
import struct s = 'F4CEF042' print(s) #<是小端,>是大端,f代表浮点数 print(struct.unpack('<f', bytes.fromhex(s))[0])#小端 #输出:120.40420532226562 s = float('6.55563714424545E-10') print(struct.pack('<f', s).hex())#小端 #输出:32333430 print(struct.pack('>f', s)…
这题假设将终于的结果竖着看,每一列构成的数能够看成是k进制的数.一共同拥有d列,随意两列都不同样,所以这就是一个d位k进制数全排列的问题,一共同拥有k ^ d个排列.假设k ^ d < n,则打印-1. 打印终于结果时设第一列就为1 1 1 1 ... 1,然后依次每列添加1后(公交车编号从1開始,不是从0開始) .注意,这里是k进制. #include <stdlib.h> #include <stdio.h> #include <algorithm> #inc…
华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/8/24 先说一下结论 有k进制数abcd,有abcd%(k−1)=(a+b+c+d)%(k−1) 这是由于kn=((k−1)+1)n=∑ni=0Cin(k−1)i 因此kn 对(k-1)取余的话为1 比如10进制1425%9=3,(1+4+2+5)=12%9=3. 这个性质眼下我在两个地方见到了 (一)算法导论第11章讲散列表的时候,除法散列的时候 h(k)=kmod m 对于m的选取,若m取2p或者2p−1 均是不合适的选择,前者…
1个字节是8位,二进制8位:xxxxxxxx 范围从00000000-11111111,表示0到255.一位16进制数(用二进制表示是xxxx) 最多只表示到15(即对应16进制的F),要表示到255,就还需要第二位.所以1个字节=2个16进制字符,一个16进制位=0.5个字节.…
前言: $FWT$是用来处理位运算(异或.与.或)卷积的一种变换.位运算卷积是什么?形如$f[i]=\sum\limits_{j\oplus k==i}^{ }g[j]*h[k]$的卷积形式(其中$\oplus$为位运算)就是位运算卷积.如果暴力枚举的话,时间复杂度是$O(n^2)$,但运用$FWT$来解决就可达到$O(nlog_{n})$的时间复杂度.$FST$则是借助$FWT$来进行的对子集卷积的优化,相当于$FWT$的一个应用. FWT 与卷积 对于与运算,有一个结论:$(i\&j)\&am…
这是一篇用来卖萌的文章QAQ 考虑以下三类卷积 \(C_k = \sum \limits_{i \;or\;j = k} A_i * B_j\) \(C_k = \sum \limits_{i\;and\;j = k} A_i * B_j\) \(C_k = \sum \limits_{i\;xor\;j = k}A_i * B_j\) 由于前两种可以用FMT(高维前缀和)解决,那我们就谈谈第三种吧 下文中的\(n\)都是形如\(2^i - 1\)的数 下标的开与闭是根据好不好写来定的,但是还是…
题目大意: 给一个\(n*n\)的矩阵,对于所有排列p,记录\(a[i][p[i]]\)的k进制下不进位加法的结果,问所有被记录过的数. \(n<=50,p=2.3,0<=a[i][j]<p^7\) 题解: 又是排列,不妨考虑行列式: \(|A|=\sum_{p是排列}(-1)^{p的逆序对个数} \prod A[i][p[i]]\) 这里的A是一个集合幂级数,×定义为k进制不进位加法卷积. 假设我们直接做高斯消元求行列式,发现由于\((-1)^?\)次方,可能导致本来≠0而加起来为0,…