前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural networks by preventing co-adaptation of feature detectors.中文大意为:通过阻止特征检测器的共同作用来提高神经网络的性能.本篇博文就是按照这篇论文简单介绍下Dropout的思想,以及从用一个简单的例子来说明该如何使用dropout. 基础知识:…
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing co-adaptation of feature detectors” 感觉没什么好说的了,该说的在引用的这两篇博客里已经说得很清楚了,直接做试验吧 注意: 1.在模型的测试阶段,使用”mean network(均值网络)”来得到隐含层的输出,其实就是在网络前向传播到输出层前时隐含层节点的输出值都…
TCP-三次握手和四次挥手简单理解 背景:TCP,即传输控制协议,是一种面向连接的可靠的,基于字节流的传输层协议.作用是在不可靠的互联网络上提供一个可靠的端到端的字节流服务,为了准确无误的将数据送达目的地,TCP协议采纳三次握手策略. 一.TCP报文 TCP报文格式图: 上图中的几个字段需要重点介绍下: 字段 介绍 序列号seq 占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序列号,第一个序列号由本地随机产生:给字节编上序号后,就给每一个报文指派一个序号:序列号se…
在有监督学习中,训练样本是有类别标签的.现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 .自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 .下图是一个自编码神经网络的示例.通过训练,我们使输出 接近于输入 .当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从输入数据中发现一些有趣的结构.举例来说,假设某个自编码神经网络的输入 是一张 张8*8 图像(共64个像素)的像素灰度值,于是 n=64,其隐藏层 中有25个隐藏神经元.…
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network training by reducing internal covariate shift 和下面的这些解读之后,还有感觉有些不明白.比如, 是怎么推导出来的,我怎么就是没搞懂呢? 1.论文翻译:论文笔记-Batch Normalization 2.博客专家 黄锦池 的解读:深度学习(二十九)Batch…
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/…
简介:这篇文章属于跨域无监督行人再识别,不同于大部分文章它使用了属性标注.旨在于能够学习到有属性语义与有区分力的身份特征的表达空间(TJ-AIDL),并能够转移到一个没有看到过的域. 贡献: 提出了一个联合属性与身份的异质多任务无监督行人重识别深度模型 从有标注的源域图片中同时学习全局的身份信息与局部的属性信息,并通过一个身份推断属性(IIA)空间来最大化学习的有效性 提出一个属性一致框架来在无标注的目标域上进行无监督的自适应 之前工作存在的问题: Re-ID: 依赖手工特征:缺乏有效域适应能力…
和maxout(maxout简单理解)一样,DropConnect也是在ICML2013上发表的,同样也是为了提高Deep Network的泛化能力的,两者都号称是对Dropout(Dropout简单理解)的改进. 我们知道,Dropout是在训练过程中以一定概率1-p将隐含层节点的输出值清0,而用bp更新权值时,不再更新与该节点相连的权值.用公式描述如下: 其中v是n*1维的列向量,W是d*n维的矩阵,m是个d*1的01列向量,a(x)是一个满足a(0)=0的激发函数形式.这里的m和a(Wv)…
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Bengio在08年提出,见其文章Extracting and composing robust features with denoising autoencoders.使用dAE时,可以用被破坏的输入数据重构出原始的数据(指没被破坏的数据),所以它训练出来的特征会更鲁棒.本篇博文主要是根据Benig…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…