使用gensim的word2vec训练了一个词向量. 语料是1G多的维基百科,感觉词向量的质量还不错,共享出来,希望对大家有用. 下载地址是: http://pan.baidu.com/s/1boPm2x5 包含训练代码.使用词向量代码.词向量文件(3个文件) 因为机器内存足够,也没有分批训练.所以代码非常简单.也在共享文件里面,就不贴在这里了.…
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词条内容处理成单行数据,word2vec训练原理是基于词共现来训练词之间的语义联系的.不同词条内容需分开训练 2 中文分词:中文NLP很重要的一步就是分词了,分词的好坏很大程度影响到后续的模型训练效果 3 特征处理:也叫词向量编码,将文本数据转换成计算机能识别的数据,便于计算,通常是转换成数值型数据,…
目录 使用 DL4J 训练中文词向量 1 预处理 2 训练 3 调用 附录 - maven 依赖 使用 DL4J 训练中文词向量 1 预处理 对中文语料的预处理,主要包括:分词.去停用词以及一些根据实际场景制定的规则. package ai.mole.test; import org.ansj.domain.Term; import org.ansj.splitWord.analysis.ToAnalysis; import org.nlpcn.commons.lang.tire.domain.…
AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法 2018-01-18 16:13蚂蚁金服/雾霾/人工智能 导读:词向量算法是自然语言处理领域的基础算法,在序列标注.问答系统和机器翻译等诸多任务中都发挥了重要作用.词向量算法最早由谷歌在2013年提出的word2vec,在接下来的几年里,该算法也经历不断的改进,但大多是仅适用于拉丁字符构成的单词(比如英文),结合中文语言特性的词向量研究相对较少.本文介绍了蚂蚁金服人工智能部与新加坡科技大学一项最新的合作成果:cw2vec——…
词向量作为文本的基本结构——词的模型,以其优越的性能,受到自然语言处理领域研究人员的青睐.良好的词向量可以达到语义相近的词在词向量空间里聚集在一起,这对后续的文本分类,文本聚类等等操作提供了便利,本文将详细介绍如何使用word2vec构建中文词向量. 一.中文语料库 本文采用的是搜狗实验室的搜狗新闻语料库,数据链接 http://www.sogou.com/labs/resource/cs.php 下载下来的文件名为: news_sohusite_xml.full.tar.gz 二.数据预处理…
1.准备语料 准备好自己的语料,保存为txt,每行一个句子或一段话,注意要分好词.将分好词的语料保存为×××.txt 2.准备源码 下载地址:https://github.com/stanfordnlp/GloVe,解压后将语料×××.txt添加到GloVe-master文件夹下 3.修改训练语料地址 打开demo.sh文件,由于默认是下载TXT8作为语料,故将这段代码删除,并修改CORPUS=×××.txt,最终文件内容如下: 其他应该都可以自行修改. 4.执行 打开终端,进入GloVe-ma…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
NLP中的Word2Vec讲解 word2vec是Google开源的一款用于词向量计算 的工具,可以很好的度量词与词之间的相似性: word2vec建模是指用CBoW模型或Skip-gram模型来计算不同 词语的向量(word vector) CBoW是给定上下文来预测输入词.Skip-gram给定输入词预测上下文,但最终都会得到词向量矩阵W 上图为词向量的部分可视化结构 Statistical Language Model (统计语言模型)  在深入word2vec之前,首先回顾下nlp中的一…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/232 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…