首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
数据结构(四十)平衡二叉树(AVL树)
】的更多相关文章
Java 树结构实际应用 四(平衡二叉树/AVL树)
平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在. 左边 BST 存在的问题分析: 1) 左子树全部为空,从形式上看,更像一个单链表. 2) 插入速度没有影响 3) 查询速度明显降低(因为需要依次比较), 不能发挥 BST 的优势,因为每次还需要比较左子树,其查询速度比 单链表还慢 4) 解决方案-平衡二叉树(AVL) 2 基本介绍 1) 平衡二叉树也叫平衡二叉搜索树(Self…
二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)
二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右…
【数据结构】平衡二叉树—AVL树
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
数据结构快速回顾——平衡二叉树 AVL (转)
平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树.平衡二叉树要求对于每一个节点来说,它的左右子树的高度之差不能超过1,如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态.这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(…
平衡二叉树,AVL树之图解篇
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点. 在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…
二叉查找树(BST)、平衡二叉树(AVL树)
二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右大的特征,在创建时,需要根据当前结点的大小来判断插入位置,给出…
Java数据结构和算法(七)--AVL树
在上篇博客中,学习了二分搜索树:Java数据结构和算法(六)--二叉树,但是二分搜索树本身存在一个问题: 如果现在插入的数据为1,2,3,4,5,6,这样有序的数据,或者是逆序 这种情况下的二分搜索树和链表几乎完全一样,是最不平衡的二叉树了,二分搜索树的效率直接降到最低 如何解决上述问题: 使二分搜索树保持平衡二叉树的特征,而今天要讲述的AVL树是最经典的平衡二叉树了 满二叉树: 除了叶子节点其余节点都有左右两个子节点的树 完全二叉树: 对于一个树高为h的二叉树,如果其第0层至第h-1层的节点都…
图解:平衡二叉树,AVL树
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点. 在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…
COJ 1010 WZJ的数据结构(十) 线段树区间操作
传送门:http://oj.cnuschool.org.cn/oj/home/problem.htm?problemID=1001 WZJ的数据结构(十) 难度级别:D: 运行时间限制:3000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 请你设计一个数据结构,高效执行以下过程: #include<iostream>using namespace std;const int maxn=100010;int A[maxn];int tp,ql,qr,v;int…
自己动手实现java数据结构(七) AVL树
1.AVL树介绍 前面我们已经介绍了二叉搜索树.普通的二叉搜索树在插入.删除数据时可能使得全树的数据分布不平衡,退化,导致二叉搜索树最关键的查询效率急剧降低.这也引出了平衡二叉搜索树的概念,平衡二叉搜索树在此前的基础上,通过一系列的等价变换使二叉搜索树得以始终处于"平衡"的状态,拥有稳定且高效的查询效率. AVL树是最早被计算机科学家发明的自平衡二叉搜索树,AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An a…