tree 内存限制:512 MiB 时间限制:3000 ms 标准输入输出 题目类型:传统 评测方式:文本比较   题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. 输入格式 第一行V,E,need分别表示点数,边数和需要的白色边数.接下来E行,每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色). 输出格式 一行表示所求生成树的边权和.V<=50000,E<=100000,所有数据边权为[1,…
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘以一个数的逆元: 代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define maxn 100005…
[LOJ#2330]「清华集训 2017」榕树之心 试题描述 深秋.冷风吹散了最后一丝夏日的暑气,也吹落了榕树脚下灌木丛的叶子.相识数年的Evan和Lyra再次回到了小时候见面的茂盛榕树之下.小溪依旧,石桥依旧,榕树虽是历经荣枯更迭,依旧亭亭如盖,只是Evan和Lyra再也不是七八年前不经世事的少年了. -- "已经快是严冬了,榕树的叶子还没落呢--" "榕树是常绿树,是看不到明显的落叶季节的--" "唉--想不到已经七年了呢.榕树还是当年的榕树,你却不是…
题目链接: [清华集训2016]石家庄的工人阶级队伍比较坚强 题目大意:有$n=3^m$个人玩石头剪刀布,共$t$轮游戏,每轮每个人要和包括自己的所有人各进行$m$次石头剪刀布.每个人在$m$轮中的决策固定,即为这个人编号的长度为$m$的三进制(其中$0$表示剪刀.$1$表示石头.$2$表示布,不足$m$位用$0$补齐).每个人有一个初始分数$f_{0,x}$,给出一个分数矩阵$b$,其中$b_{i,j}$表示赢了$i$局输了$j$局的得分,在第$i$轮结束后,第$x$个人的分数为$f_{i,x…
#274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; #define lc t[x].ch[0] #define rc t[x].ch[1] #define pa t[x].fa co…
#164. [清华集训2015]V http://uoj.ac/problem/164 统计 描述 提交 自定义测试 Picks博士观察完金星凌日后,设计了一个复杂的电阻器.为了简化题目,题目中的常数与现实世界有所不同. 这个电阻器内有编号为 1∼n1∼n 的 nn 个独立水箱,水箱呈圆柱形,底面积为 1 m21 m2,每个水箱在顶部和底部各有一个阀门,可以让水以 1 m3/s 的流量通过,每个水箱的上阀门接水龙头,可以无限供应水,下阀门不接东西,可以让水流出.水箱顶部和底部都有一个接口,水的电…
题目描述 小 Y 是一个心灵手巧的 OIer,她有许多二叉树模型. 小 Y 的二叉树模型中,每个结点都具有一个编号,小 Y 把她最喜欢的一个二叉树模型挂在了墙上,树根在最上面,左右子树分别在树根的左下方与右下方,且他们也都满足这样的悬挂规则.为了让这个模型更加美观,小 Y 选择了一种让这棵二叉树的中序遍历序列最小的悬挂方法.所谓中序遍历最小,就是指中序遍历的结点编号序列的字典序最小. 一天,这个模型不小心被掉在了地上,幸运的是,所有结点和边都没摔坏,但是她想不起这个模型原来是怎么悬挂的了,也就是…
UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. 因此我们要求的路径一定是最大生成树上的路径. 于是变成了LCT模板题,动态维护最大生成树即可. 注意每次find可能会T,于是我又写了个并查集... 代码: #include <stdio.h> #include <string.h> #include <algorithm>…
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选择两个物品可以有 \((1,2),(1,3),(2,3)\) 这三种选择方法.根据组合数的定义,我们可以给出计算组合数$ C_m^n$的一般公式: \[ C_n^m=\frac{n!}{m!(n-m)!} \] 其中 \(n!=1×2×⋯×n\).(额外的,当 n=0n=0 时, n!=1n!=1)…
UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x) = \sum_{k = 0}^{n}f(k){n\choose k}x^k(1 - x) ^{n - k} \pmod{998244353} \] 考虑一个很巧妙的变化:组合数多项式! 设: \[ f(n)=\sum_{i=0}^m\binom{n}{i}h_i \] 可以这么玩的原因是\(\b…