(ML邹博)回归】的更多相关文章

目录 线性回归 高斯分布 最大似然估计 最小二乘法的本质 Logistic回归 工具 梯度下降算法 最大似然估计 线性回归 对于单个变量: y=ax+b 对于多个变量: 使用极大似然估计解释最小二乘法 \(y^{(i)}=\theta^{T}x^{(i)}+\varepsilon^{(i)}\) 误差\(\varepsilon^{(i)}(1\le i\le m)\)是独立同分布的,服从均值为0,方差为某定值\(\sigma^{2}\)的高斯分布. 原因:中心极限定理 中心极限定理的意义 在实际…
机器学习入门 深度学习和机器学习? 深度学习在某种意义上可以认为是机器学习的一个分支,只是这个分支非常全面且重要,以至于可以单独作为一门学科来进行研究. 回忆知识 求解S. 对数函数的上升速度 我们使用Python简单写一段代码可以很容易获得结果.但是我们使用数学来分析: 令\(f(x)=log_ax\) 则: 那么我们需要考虑: 构造数列: 我们很容易推出: 根据前文,已经证明了数组\({a_n}\)单增有上界,因此,必有极限,记作e. 根据夹逼定理,函数极限存在,为e. 导数 简单来说,导数…
主要内容 矩阵 特征值和特征向量 矩阵求导 矩阵 SVD的提法 奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做对称方阵在任意矩阵上的推广. 假设A是一个\(m\times n\)阶实矩阵,则存在一个分解使得: 通常将奇异值从大到小排列,这样\(\sum\)就能由A唯一确定了. 与特征值.特征向量的概念相对应 \(\sum\)在对角线上的元素称为矩阵A的奇异值: U的第i列称为A的关于的左奇异向量: V的第i列称为A的关于的右奇异向量. 例…
目录 凸集的基本概念 凸函数的基本概念 凸优化的一般提法 凸集基本概念 思考两个不能式 两个正数的算术平均数大于等于几何平均数 给定可逆对称阵Q,对于任意向量x,y,有: 思考凸集和凸函数 在机器学习中,我们把形如 这样的图形的都称为凸函数. \(y=x^2\)是凸函数,函数图像上位于\(y=x^2\)的区域构成凸集. 凸函数图像的上方区域,一定是凸集: 一个函数图像的上方区域为凸集,则该函数是凸函数. 直线的向量表达 已知二维平面上的两定点A(5,1),B(2,3)尝试给出经过带你AB的直线方…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等.主要学习资料来自Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,Stanford CS231n等在线课程和Tutorial,同一时候也參考了大量网上的相关资料(在后面列出). 前言 本文主要介绍逻辑回归的基础知识.文章小节安排例如以下: 1)逻辑回归定义 2)如果函数(Hypothesis func…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn eShopDashboardML - 销售预测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 ASP.NET Core Web应用程序和控制台应用…
ML.NET 0.6版本提供了几项令人兴奋的新增功能: 用于构建和使用机器学习模型的新API 我们主要关注的是发布用于构建和使用模型的新ML.NET API的第一次迭代.这些新的,更灵活的API支持新任务和代码工作流,这是以前的LearningPipelineAPI 无法实现的.我们开始弃用当前的LearningPipelineAPI. 这是一项重大改变,旨在使您的机器学习更轻松,更强大.我们希望通过GitHub的公开讨论来反馈您的反馈,以帮助塑造长期的ML.NET API,以最大限度地提高您的…
上一章介绍了使用逻辑回归处理分类问题.尽管逻辑回归是个非常好用的模型,但是在处理非线性问题时仍然显得力不从心,下图就是一个例子: 线性模型已经无法很好地拟合上面的样本,所以选择了更复杂的模型,得到了复杂的分类曲线: 然而这个模型存在两个问题:过拟合和模型复杂度.过拟合问题可参考<ML(附录3)——过拟合与欠拟合>,这里重点讲模型复杂度. 还是非线性分类,现在将输入扩充为100个,为了拟合数据,我们构造了更多的特征: 约有 1002/2 = 5000个特征.由此看来,对于n个输入,二次项特征的个…
  在人工智能领域,无论是机器学习,还是深度学习等,Python编程语言都是绝对的主流,尽管底层都是C++实现的,似乎人工智能和C#/F#编程语言没什么关系.在人工智能的工程实现,通常都是将Python训练好的人工智能模型封装为REST API,以供其它的系统调用.虽然C#也确实天生就不合适搞人工智能的训练等,但是通过ML.NET这个开放源代码的跨平台机器学习框架,可以很容易的将人工智能集成到Web.移动.桌面.游戏和物联网应用中.这篇文章主要总结ML.NET的相关学习资源. 一.ML.NET模…
Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http://blog.csdn.net/v_july_v/article/details/7237351#t40: 2014年10月18日,北京10月机器学习班开班,全部PPT 的下载地址见:http://blog.csdn.net/v_july_v/article/details/7237351#t63: 201…