原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式. 我用pandas实现相同的公式只要3行. 特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据. ''' 基于用户的协同推荐 矩阵数据 ''' import pandas as pd from io import StringIO import json #数据类型一:csv矩阵(用户-商品)(适用于小数据量) csv_txt = '''"user","Blues Traveler&qu…
''' 基于用户的协同推荐 条目数据 ''' import pandas as pd from io import StringIO import json #数据类型一:条目(用户.商品.打分)(避免巨型稀疏矩阵) csv_txt = '''"Angelica","Blues Traveler",3.5 "Angelica","Broken Bells",2.0 "Angelica","Nora…
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价标准是不同的,比如喜欢一个歌手时有些人会打4分,有些打5分:不喜欢时 有人会打3分,有些则会只给1分.修正的余弦相似度计算时会将用户对物品的评分减去 用户所有评分的均值,从而解决这个问题. ''' import pandas as pd from io import StringIO #数据类型一:…
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价标准是不同的,比如喜欢一个歌手时有些人会打4分,有些打5分:不喜欢时 有人会打3分,有些则会只给1分.修正的余弦相似度计算时会将用户对物品的评分减去 用户所有评分的均值,从而解决这个问题. 如何预测用户对给定物品的打分? 一.基于用户协同 方法1:用户之间的距离/相似度(K近邻算法) 二.基于物品协…
介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其中协同过滤技术又可根据是否采用了机器学习思想建模的不同划分为基于内存的协同过滤(Memory-based CF)与基于模型的协同过滤技术(Model-based CF).其中基于模型的协同过滤技术中尤为矩阵分解(Matrix Factorization)技术最为普遍和流行,因为它的可扩展性极好并且易…
一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等.        这种算法是在NetFlix(没错,就是用大数据捧火<纸牌屋>的那家公司)的推荐算法竞赛中获奖的算法,最早被应用于电影推荐中,在实际应用中比现在排名第一的 @邰原朗所介绍的算法误差(RMSE)会小不少,效率更高.下面仅利用基础的矩阵知识来介绍下这种算法.        该算法的思想是…
转自:http://zengzhaozheng.blog.51cto.com/8219051/1557054 一.概述 这2个月为公司数据挖掘系统做一些根据用户标签情况对用户的相似度进行评估,其中涉及一些推荐算法知识,在这段时间研究了一遍<推荐算法实践>和<Mahout in action>,在这里主要是根据这两本书的一些思想和自己的一些理解对分布式基于ItemBase的推荐算法进行实现.其中分两部分,第一部分是根据共现矩阵的方式来简单的推算出用户的推荐项,第二部分则是通过传统的相…
在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法.而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$ 其中k为分解成低维的维数,一般远比m和n小.如果大…
隐语义模型(Latent factor model,以下简称LFM),是推荐系统领域上广泛使用的算法.它将矩阵分解应用于推荐算法推到了新的高度,在推荐算法历史上留下了光辉灿烂的一笔.本文将对 LFM 原理进行详细阐述,给出其基本算法原理.此外,还将介绍使得隐语义模型声名大噪的算法FunkSVD和在其基础上改进较为成功的BiasSVD.最后,对LFM进行一个较为全面的总结. 1. 矩阵分解应用于推荐算法要解决的问题 在推荐系统中,我们经常可能面临的场景是:现有大量用户和物品,以及少部分用户对少部分…
Python 的 Pandas 对矩阵的行进行求和: 若使用 df.apply(sum) 方法的话,只能对矩阵的列进行求和,要对矩阵的行求和,可以先将矩阵转置,然后应用 df.apply(sum) 即可. data_file = '..\\data\\result_0621_onlyClusters.csv' df = pd.read_csv(data_file) # print(df) # 对行进行求和 # 先对矩阵进行转置 df_T=df.T df['sum'] = df_T.apply(s…
题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积AB是一个m×p矩阵,它的一个元素其中 1 ≤ i ≤ m, 1 ≤ j ≤ p. 值得一提的是,矩阵乘法满足结合律和分配率,但并不满足交换律,如下图所示的这个例子,两个矩阵交换相乘后,结果变了: 下面咱们来具体解决这个矩阵相乘的问题. 解法一.暴力解法 其实,通过前面的分析…
R语言实现关联规则 笔者前言:以前在网上遇到很多很好的关联规则的案例,最近看到一个更好的,于是便学习一下,写个学习笔记. 1 1 0 0 2 1 1 0 0 3 1 1 0 1 4 0 0 0 0 5 1 1 0 1 6 1 0 1 0 2.关联规则专业术语项集 ItemSet 这是一条关联规则: 括号内的Item集合称为项集.如上例,{News, Finance}是一个项集,{Sports}也是一个项集. 这个例子就是一条关联规则:基于历史记录,同时看过News和Finance版块的人很有可能…
前言: 很多朋友看到我写的<算法导论>系列,可能会觉得云里雾里,不知所云.这里我再次说明,本系列博文时配合<算法导论>一书,给出该书涉及的算法的c++实现.请结合<算法导论>一书阅读该系列博文.我这里有该书的电子版,有需要的朋友可以留言. 正题: 今天讨论的算法是矩阵乘法的Strassen算法,该算法的精髓在于减少n/2矩阵*n/2矩阵的次数.首先,作一些写该算法的基础工作: /* * 矩阵的加法运算 */ void Add(int** matrixA, int** m…
1. 前言 什么是特殊矩阵? C++,一般使用二维数组存储矩阵数据. 在实际存储时,会发现矩阵中有许多值相同的数据或有许多零数据,且分布呈现出一定的规律,称这类型的矩阵为特殊矩阵. 为了节省存储空间,可以设计算法,对这类特殊矩阵进行压缩存储,让多个相同的非零数据只分配一个存储空间:对零数据不分配空间. 本文将讲解如何压缩这类特殊矩阵,以及压缩后如何保证矩阵的常规操作不受影响. 2. 压缩对称矩阵 什么是对称矩阵? 在一个n阶矩阵A中,若所有数据满足如下述特性,则可称A为对称矩阵. a[i][j]…
transform: matrix(a,b,c,d,e,f) ,如下图矩阵所示,任意点(x,y,1)经过matrix变化为(ax+cy+e,bx+dy+f,1),由此可以知道,matrix参数与translate/scale/skew/rotate函数参数的对应关系为: translate(tx,ty) matrix(1,0,0,1,tx,ty) scale(sx,sy) matrix(sx,0,0,sy,0,0) skew(sx,sy) matrix(1,tansy,tansx,1,0,0)…
线性代数是计算机图形学的一块基石,本篇文章总结如何在Shader中使用矩阵来移动.缩放和旋转顶点. 代码和效果 把下面的代码复制到OpenGL Console里: import java.nio.ByteBuffer import java.nio.ByteOrder import javax.media.opengl.GL import org.glob.math.Matrix4f // shaders def vertexShaderCode = """ uniform…
摘自<matlab从入门到精通>胡晓东 matlab最基本的数据结构就是矩阵,一个二维的.长方形形状的数据,可以用易于使用的矩阵形式来存储,这些数据可以是数字,字符.逻辑状态,甚至是matlab的结构数组类型.matlab使用二维的矩阵来存储单个数值或者线性数列.matlab同时支持多余二维的数据结构. 矩阵的储存: MATLAB中矩阵与数组的区别,点运算符的运用 http://blog.csdn.net/peterkang202/article/details/26623219…
Document of Dictionaries 10 Minutes to pandas tutorialspoint import pandas as pd data = [['Alex',10],['Bob',12],['Clarke',13]] df = pd.DataFrame(data,columns=['Name','Age'],dtype=float) print df Name Age 0 Alex 10.0 1 Bob 12.0 2 Clarke 13.0 Series 和…
目录 1 问题描述 2 解决方案   1 问题描述 问题描述 小明最近在为线性代数而头疼,线性代数确实很抽象(也很无聊),可惜他的老师正在讲这矩阵乘法这一段内容. 当然,小明上课打瞌睡也没问题,但线性代数的习题可是很可怕的. 小明希望你来帮他完成这个任务. 现在给你一个ai行aj列的矩阵和一个bi行bj列的矩阵, 要你求出他们相乘的积(当然也是矩阵). (输入数据保证aj=bi,不需要判断) 输入格式 输入文件共有ai+bi+2行,并且输入的所有数为整数(long long范围内). 第1行:a…
Matrix,中文里叫矩阵,高等数学里有介绍,在图像处理方面,主要是用于平面的缩放.平移.旋转等操作. 在Android里面,Matrix由9个float值构成,是一个3*3的矩阵.最好记住.如下图: 解释一下,上面的sinX和cosX,表示旋转角度的cos值和sin值,注意,旋转角度是按顺时针方向计算的. translateX和translateY表示x和y的平移量.scale是缩放的比例,1是不变,2是表示缩放1/2,这样子. 例如:从最简单的旋转90度 在android.graphics.…
以 sklearn的iris样本为数据集 import matplotlib.pyplot as plt from scipy import sparse import numpy as np import matplotlib as mt import pandas as pd from IPython.display import display from sklearn.datasets import load_iris import sklearn as sk from sklearn.…
转自 # 直接传入一组数据 from pandas import Series, DataFrame obj = Series([4, 2, 3]) obj 0 4 1 2 2 3 dtype: int64…
pandas数据结构介绍 主要两种数据结构:Series和DataFrame.   Series   Series是一种类似于一维数组的对象,由一组数据(各种NumPy数据类型)+数据标签(即索引)组成. #直接传入一组数据 from pandas import Series,DataFrame obj=Series([4,2,3]) obj #Series的values和index属性获取数组表示形式和索引对象 obj.values obj.index Series字符串的表现形式:索引在左,…
BERT模型完成问答任务的时候,需要数据格式为SQuAD形式. 有2个版本,1.1和2.0…
mpi矩阵乘法(C=αAB+βC) 最近领导让把之前安装的软件lapack.blas里的dgemm运算提取出来独立作为一套程序,然后把这段程序改为并行的,并测试一下进程规模扩展到128时的并行效率.        我发现这个是dgemm.f文件,里面主要是对C=αAB+βC的实现,因此在此总结一下MPI的矩阵乘法使用.        其主要思想:是把相乘的矩阵按行分解(任务分解),分别分给不同的进程,然后在汇总到一个进程上,在程序上实现则用到了主从模式,人为的把进程分为主进程和从进程,主进程负责…
mpi矩阵乘法:C=αAB+βC 一.主从模式的行列划分并行法 1.实现方法 将可用于计算的进程数comm_sz分解为a*b,然后将矩阵A全体行划分为a个部分,将矩阵B全体列划分为b个部分,从而将整个结果矩阵划分为size相同的comm_sz个块.每个子进程负责计算最终结果的一块,只需要接收A对应范围的行和B对应范围的列,而不需要把整个矩阵传过去.主进程负责分发和汇总结果. 进程数comm_sz分解为a*b的方法: int a=comm_sz/(int)sqrt(comm_sz); int b=…
注:DataFrame的构造方法与Series类似,只不过同时接受一条一维数据源,每一条都会成为单独的一列. 注意,返回的Series拥有原DataFrame 相同的索引,且其name属性也已经被相应地设置好. 获取行 行也可以使用位置或名称的方式进行获取,使用索引字段.loc 列可以通过赋值的方式进行修改.  …
package chap04_Divide_And_Conquer; import static org.junit.Assert.*; import java.util.Arrays; import org.junit.Test; /** * 矩阵相乘的算法 * * @author xiaojintao * */ public class MatrixOperation { /** * 普通的矩阵相乘算法,c=a*b.其中,a.b都是n*n的方阵 * * @param a * @param b…
目录 Python第一周笔记 1.学习Python目的 2.Python简史介绍 3.Python3特性 4.Hello World程序 5.变量与赋值 6.用户交互 7.条件判断与缩进 8.循环控制 9.循环次数限制 10.简单的嵌套循环 11.常用数据类型 12.字符串格式化 13.列表常用操作 14.列表后续操作 15.文件基本操作 1.学习Python目的: 1.学完之后,可以做开发运维监控.自动化软件.聊天软件.BBS.博客和网站. 2.投资自己,结识更多的朋友,变更更优秀的人 Pyt…