题面传送门 神仙题. 首先乍一看此题非常棘手,不过注意到有一个条件 \(0\le x_{i,j}\le m\),而整个矩阵恰好有 \(m\) 列,这就启发我们考虑将每个元素的上下界求出来,如果我们第一列全填 \(0\),其余每个数都恰好等于它左边的数加 \(1\),那么 \(x_{i,j}\) 刚好取到下界 \(j-1\):如果我们最后一列全填 \(m\),其余每个数都恰好等于它右边的数减 \(1\),那么 \(x_{i,j}\) 刚好取到上界 \(j\),因此对于任意一个第 \(j\) 列的元…
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; #define MOD 1000000007 #define MAX 3000300 void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;} int n,m,inv[MAX],jc[MAX],jv[MAX],N,ans; int Calc(int x,in…
[JLOI2015]骗我呢 Tags:题解 作业部落 评论地址 TAG:数学,DP 题意 骗你呢 求满足以下条件的\(n*m\)的矩阵的个数对\(10^9+7\)取模 对于矩阵中的第\(i\)行第\(j\)列的元素\(x_{i,j}\)都有 \(x_{i,j}<x_{i,j+1}\) \(x_{i,j}<x_{i-1,j+1}\) \(0\le x_{i,j}\le m\) 题解 Part 0 前言 不会做啊!(杠了四五个小时!) 谢两位dalao:blog1.blog2 以下图片均来自于此篇…
洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数,那么 \[ans=\dfrac{1}{(nml)!}\sum\limits_{i=k}^{\min(n,m,l)}f_i(-1)^{i-k}\dbinom{i}{k} \] 考虑怎么求 \(f_i\),首先我们肯定要选出 \(i\) 个极大的位置.我们假设 \(g_i\) 为选出 \(i\) 个极大的位置的…
(题目来自洛谷oj) 一天,maze决定对自己的一块n*m的土地进行修建.他希望这块土地共n*m个格子的高度分别是1,2,3,...,n*m-1,n*m.maze又希望能将这一些格子中的某一些拿来建蓄水池,即这个格子的高度应该比它周围8个格子的高度都小(超出土地范围的格子的高度算作无穷大).现在,请你帮maze计算:他有多少种不同的修建土地的方案数? (请你将方案数对12345678取模) 输入 输入第一行两个数字n,m. 接下来N行,每行M个字符,’.’表示普通格子,’X’表示蓄水池. 输出…
洛谷 首先,看到\((\frac{(b+\sqrt{d})}{2})^n\),很快能够想到一元二次方程的解\(\frac{-b\pm\sqrt{\Delta}}{2a}\). 所以可以推出,\(\frac{(b+\sqrt{d})}{2}\)和\(\frac{(b-\sqrt{d})}{2}\)是\(x^2-bx+\frac{b^2-d}{4}\)的解. 方程移项得:\(x^2=b^2+\frac{d-b^2}{4}\). 所以设\(f[i]=(\frac{b+\sqrt{d}}{2})^i+(…
洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可能,一是 Min-Max 容斥将 LCM 转化为 GCD,而是枚举质因子及其次数算贡献.但对于此题而言前者不是太可做(可能有复杂度不错(大概 \(n^2d(n)\)?)的解法,不过我没有细想所以也不太清楚),因此考虑后者. 考虑用类似于差分的思想,对于每个质因子 \(p\) 的每个次数 \(k\),…
洛谷题面传送门 神仙题 %%%%%%%%%%%%%%%%%%%% 题解搬运人来了 首先看到本质不同(无标号)的图计数咱们可以想到 Burnside 引理,具体来说,我们枚举一个排列 \(p\),并统计有多少张图中的点集在置换 \(p\) 的作用下能够保持不变,记这个数目为 \(c(p)\),那么答案就是 \(\dfrac{1}{n!}\sum\limits_{p}c(p)\).由于此题 \(n\) 高达 \(50\),因此暴力枚举 \(p\) 显然是不合理的,不过注意到合法的图的数量并不取决于…
题意: Alice和Bob在经过了数学的洗礼之后,不再喜欢玩对抗游戏了,他们喜欢玩合作游戏.现在他们有一个n×m的网格,Alice和Bob要在一定规则下往网 格里填数字,Alice和Bob都是聪明绝顶的,所以他们想计算有多少种方式能填满网格,但数字过于庞大,而他们又没有学过取模.因此,他们找到了 你,请你给出方案数$\mod 10^9+7$.规则如下:对于$1≤i≤n,1≤j<m$满足$a_{i,j}<a_{i,j}+1$对于$1<i≤n,1≤j<m$满足$a_{i,j}<a…
http://www.lydsy.com/JudgeOnline/problem.php?id=4005 神题~远距离orz 膜拜PoPoQQQ大神 #include<cstdio> #include<cstdlib> #include<iostream> #include<fstream> #include<algorithm> #include<cstring> #include<string> #include<…