Codeforces 题目传送门 & 洛谷题目传送门 upd on 2021.10.20:修了个 typo( 这是一道 *2600 的 D2E,然鹅为啥我没想到呢?wtcl/dk 首先第一步我就没想到/kk,看到"恰好"二字我们可以想到一个东西叫做二项式反演(qwq 这个套路在刷多项式题时经常见到,可咋换个场景就想不到了呢?显然是我多项式白学了/doge).我们设 \(f_k\) 表示恰好 \(k\) 个完美数的排列个数,\(g_k\) 表示钦定 \(k\) 个位置满足 \(|…
Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote the i-th element of permutation p as pi. We'll call number n the size or the length of permutation…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3622 题解 首先显然如果 \(n - k\) 为奇数那么就是无解.否则的话,"糖果"比"药片"大的组数,应该为 \(\frac {n+k}2\). 考虑到多恰好 \(k\) 组不太好求,但是如果选了 \(k\) 组必须是"糖果"比"药片"大,这个方案数还是很好求的. 首先是选了 \(k\) 组必须是"糖果&quo…
Iahub and Permutations 题解: 令 cnt1 为可以没有限制位的填充数字个数. 令 cnt2 为有限制位的填充数字个数. 那么:对于cnt1来说, 他的值是cnt1! 然后我们对cnt2进行dp. 对于任意一个新加进来的数字,我们可以令一个一个没有限制位数放在这里, 那么新加进来的数字 ≍ 没有限制位, 他的方案为 i-1 * dp[i-1] , 然后我们如果把这个数字放到有限制位的数来说, 那么他的转移方程就和错排一样了. 代码: #include<bits/stdc++…
\(>Codeforces \space 285 E. Positions in Permutations<\) 题目大意 : 定义一个长度为 \(n\) 的排列中第 \(i\) 个元素是好的,当且仅当 \(i\)在排列中的位置 \(p_i\) 满足 \(|i - p_i| = 1\), 给出 \(n, k\) 求长度为 \(n\) 的排列中恰好有 \(k\) 个元素是好的方案数 $1 \leq n \leq 1000, 0 \leq k \leq n $ 解题思路 : 观察发现,直接求出答案…
Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经过 \(z\) 次操作后剩下的数为 \(i\) 的概率,那么显然有 \(dp\) 转移方程 \(dp_{z,i}=\sum\limits_{j\ge i}dp_{z-1,j}·\dfrac{1}{j+1}\). 边界条件 \(dp_{0,i}=p_i\) 直接递推显然不行,考虑优化,我们记 \(F_z(x)…
P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- 如果:$f(n)=\sum_{i=0}^{n}C(n,i)g(i)$ 那么:$g(n)=\sum_{i=0}^{n}(-1)^{n-i}\ C(n,i)f(i)$ ---------------------------- 如果:$f(k)=\sum_{i=k}^{n}C(i,k)g(i)$ 那么:…
题目链接: 洛谷 BZOJ 题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 $i$ 的个数恰好多 $k$ 个.答案对 $10^9+9$ 取模. $1\le n\le 2000,0\le k\le n$.保证 $a,b$ 中没有相同的数. 首先根据小学数学知识可知,$a_i>b_i$ 的个数应该是 $\frac{n+k}{2}$.如果 $n+k$ 不是偶数那么就无解. 那么就可…
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{n - k}{2} + k\)个的方案数,我们记为\(K\) 思路1 直接求恰好不好求,想到二项式反演: 如果有 \[b_k = \sum\limits_{i = k}^{n} {i \choose k} a_i\] 那么有 \[a_k = \sum\limits_{i = k}^{n} (-1)^…
[传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥,这会使时间复杂度非常高,那么就考虑枚举行后\(dp\).设\(f[i]\)表示存在\(i\)列有线,任意一行无线的方案数,\(g[i[\)表示至少有\(i\)列有线,任意一行无线的方案数,那么 \[g[i]=\sum\limits_{k=i}^n C(i,k)f[i]\] 二项式反演得 \[f[0…
LINK:游戏 还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻. 二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换. 设\(f_i\)表示至多的方案数 \(g_i\)表示恰好的方案. 则有 \(f_n=\sum_{i=0}^nC(n,i)\cdot g_i\) 根据二项式反演则有 \(g_n=\sum_{i=0}^n(-1)^{n-i}\cdot C(n,i)\cdot f_i\) 设\(f_i\)表示至少的方案数 \(g_i\)表示恰好的方案. 则有…
题面传送门 没错这就是我 boom0 的那场 NOIOL 的 T3 一年前,我在 NOIOL #2 的赛场上折戟沉沙,一年后,我从倒下的地方爬起. 我成功了,我不再是从前那个我了 我们首先假设 A 拥有的点为 \(p_1,p_2,\cdots,p_m\),B 拥有的点为 \(q_1,q_2,\cdots,q_m\),显然 A.B 出牌的顺序是无关紧要的,因此我们不妨假设 A 就按 \(p_1,p_2,\cdots,p_m\) 的顺序出牌,题目就等价于有多少个 \(q\) 的排列 \(r\) 满足…
[CF285E]Positions in Permutations(动态规划,容斥) 题面 CF 洛谷 题解 首先发现恰好很不好算,所以转成至少,这样子只需要确定完一部分数之后剩下随意补. 然后套一个二项式反演进行容斥就可以得到答案了. 考虑怎么算至少\(m\)个的贡献, 设\(f[i][j][S]\)表示当前填到了位置\(i\),一个有\(j\)个贡献,\(i\)和\(i+1\)的使用情况是\(S\)的方案数,每次枚举一下这个位置是填\(i+1\)还是\(i-1\)还是其他就可以进行转移了.…
http://codeforces.com/contest/111/problem/D Little Petya loves counting. He wants to count the number of ways to paint a rectangular checkered board of size n × m (n rows, m columns) in k colors. Besides, the coloring should have the following proper…
思路 dp+二项式反演的神题 就是dp部分非常麻烦(好吧是我傻了 考虑先钦定m个满足条件的位置,这m个\(x_i\),只能放\(x_i-1\)或\(x_i+1\),然后其他的随便放(得出至少m个的方案数,然后上一发二项式反演即可 设dp[i][j][0/1][0/1]表示前i个,有j个满足条件的位置,第i个和第i+1个是否被放在其他位置, 然后有, dp[i][j][k][0]+=dp[i-1][j][p][k](不管第i个位置,第i个位置没有被选中) dp[i][j+1][k][0]+=dp[…
题目:http://codeforces.com/gym/101933/problem/K 其实每个点的颜色只要和父亲不一样即可: 所以至多 i 种颜色就是 \( i * (i-1)^{n-1} \),设为 \( f(i) \),设恰好 i 种颜色为 \( g(i) \) 那么 \( f(i) = \sum\limits_{j=0}^{i} C_{i}^{j} * g(j) \) 二项式反演得到 \( g(i) = \sum\limits_{j=0}^{k} (-1)^{k-j} * C_{k}…
方法一 设\(f_i\)为最多使用\(i\)种颜色的涂色方案,\(g_i\)为恰好只使用\(i\)种颜色的涂色方案.可知此题答案为\(g_k\). 根据排列组合的知识不难得到\(f_k = \sum_{i=0}^k{C_k^i*g_i}\). 根据二项式反演的式子 or 容斥原理,有\(g_k = \sum_{i = 0}^k{(-1)^{k-i}*C_k^i*f_i}\),这时只要有\(f_i\)我们就可以累加得到最终答案,看题面考虑\(f_i\)的现实意义,根有\(i\)种可选,往下涂每个点…
Sky Full of Stars 题目链接:http://codeforces.com/problemset/problem/997/C 数据范围:略. 题解: 首先考虑拟对象,如果至少有一行完全相等即可. 这个的答案就需要多步容斥:$\sum\limits_{i = 1} ^ n (-1)^{i + 1}\cdot 3 ^ i\cdot 3 ^ {n \cdot (n - i)}$. 那么至少有一列的答案跟这个一样. 把他俩加一起就是答案么?我们需要减去什么? 显然,需要减掉至少有一行且至少…
传送门 解题思路 首先将\(a\),\(b\)排序,然后可以算出\(t(i)\),表示\(a(i)\)比多少个\(b(i)\)大,根据容斥套路,设\(f(k)\)表示恰好有\(k\)个\(a(i)\)比\(b(i)\)大,\(g(k)\)表示至少有\(k\)个,那么\(g(k)=\sum\limits_{i=k}^n\dbinom{i}{k}f(i)\).发现这是一个二项式反演的形式,现在的问题变为如何求\(g(k)\),发现可以强制选\(k\)组,其余的任意搭配,强制选\(k\)组就可以\(d…
luoguP4859 已经没有什么好害怕的了(二项式反演) 祭奠天国的bzoj. luogu 题解时间 先特判 $ n - k $ 为奇数无解. 为了方便下记 $ m = ( n + k ) / 2 $ 为 $ A>B $ 的个数. 恰好改钦定. 设 $ dp( i , j ) $ 为考虑 $ A $ 的前 $ i $ 个数钦定 $ j $ 对 $ A>B $ 的方案数. 有钦定 $ g( i ) = dp( n , i ) \times ( n - i )! $ . 然后直接二项式反演 $…
听说3^n也能水过去.. 其实应该是个经典题,求图染色这个np问题. 把问题拆成独立集来进行dp可以在3^n之内水过去. 拆成独立集的时候就发现,等价与一个经典的反演dp问题 然后复杂度就变成了 n*n*2^n 另外,偷到一套头文件宏定义. #include <math.h> #include <time.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include…
题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:102400000, 102400000") #include <algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le y\le M_y\),并且不能不走.同时有\(k\)个限制,表示不能同时\(x=y=k_i\),保证所有\(k_i\)都是\(G\)的倍数.求恰好跳了\(R\)步到达的方案数. 题解 如果不存在不能走的点的限制,那么两维可以分开考虑.比如接下来只考虑\(x\)上的问题. 因为存在步长的限制,所以设\…
传送门 其实标签只是搞笑的. 没那么难. 二项式反演只是杀鸡用牛刀而已. 这道题也只是让你n≤20n\le20n≤20的错排数而已. 还记得那个O(n)O(n)O(n)的递推式吗? 没错那个方法比我今天用的要快一些. 言归正传. 回忆一下二项式反演的式子: fn=∑i=0n(ni)gif_n=\sum_{i=0}^n\binom{n}{i}g_ifn​=∑i=0n​(in​)gi​ =>gn=∑i=0n((−1)i(nn−i)fi)g_n=\sum_{i=0}^n((-1)^i\binom{n}…
链接:vjudge 题目大意:有一排方格共 $n$ 个,现在有 $m$ 种颜色,要给这些方格染色,要求相邻两个格子的颜色不能相同.现在问恰好用了 $k$ 种颜色的合法方案数.答案对 $10^9+7$ 取模.$T$ 组数据. $1\le T\le 300,1\le n,m\le 10^9,1\le k\le 10^6,k\le \min(n,m)$.大多数数据中 $k$ 很小.(smg啊……) 经典的二项式反演例题. 我们令 $f(x)$ 为一共有 $x$ 种颜色,恰好用了 $x$ 种颜色的方案数…
终于讲到反演定理了,反演定理这种东西记一下公式就好了,反正我是证明不出来的~(-o ̄▽ ̄)-o 首先,著名的反演公式 我先简单的写一下o( ̄ヘ ̄*o) 比如下面这个公式 f(n) = g(1) + g(2) + g(3) + ... + g(n) 如果你知道g(x),蓝后你就可以知道f(n)了 如果我知道f(x),我想求g(n)怎么办 这个时候,就有反演定理了 反演定理可以轻松的把上面的公式变为 g(n) = f(1) + f(2) + f(3) + ... + f(n) 当然,我写的只是个形式…
题意:小球排成一排,从m种颜色中选取k种颜色给n个球上色,要求相邻的球的颜色不同,求可行的方案数,答案模1e9+7.T组数据,1<= n, m <= 1e9, 1 <= k <= 1e6, k <= n, m 分析: a(k)表示用不超过k种颜色染n个位置,两两相邻颜色不相同的总数,很简单a(k)=k(n-1)^(k-1) b(k)表示恰好用k种颜色 很显然a(k)=ΣC(k,i)b(i),我们知道a,想知道b,这里就用到二项式反演 那么b(k)=ΣC(k,i)*i*(-1)…
[CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Memory limit 262144 kB Source Codeforces Round #605 (Div. 3) Tags brute force   dp   *1500 Site https://codeforces.com/problemset/problem/1272/D 题面 Exam…
Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出.$n \le 10^9,k \le 200000$ 化学学考时含义推式子+手动打表找规律得到了一个$O(nlogn)$的式子开心的很我以为我要AC了回来看数据范围就升天了. 问NC大神这题用到了什么:斯特林数/伯努利数.然后就自闭了学了一天的知识点还去做了点…