利用MONAI加速医学影像学的深度学习研究 Accelerating Deep Learning Research in Medical Imaging Using MONAI 医学开放式人工智能网络(MONAI)是一个免费提供.社区支持.基于Pythorch的医疗影像学深度学习框架.它为开发训练工作流程提供了领域优化的基础功能. 在4月份发布的gtc2020 alpha版本的基础上,MONAI现在发布了0.2版本,为医学成像研究人员提供了新的功能.示例和研究实现,以加快人工智能开发的创新步伐.…
开发环境介绍 在SuperVessel云上,我们为大家免费提供当前火热的caffe深度学习开发环境.SuperVessel的Caffe有如下优点: 1) 免去了繁琐的Caffe环境的安装配置,即申请即使用. 2) 集成了SuperVessel先进的GPU虚拟化技术,POWER8,GPU与cuDNN库三重加速的Caffe,极大的节约您的模型训练时间. 3) 环境集成了一些优秀的Caffe开源模型,如图片识别与人脸识别模型,帮助您更快的学习理解Caffe,助力您搭建有趣的深度学习应用. Caffe深…
  利用 TFLearn 快速搭建经典深度学习模型 使用 TensorFlow 一个最大的好处是可以用各种运算符(Ops)灵活构建计算图,同时可以支持自定义运算符(见本公众号早期文章<TensorFlow 增加自定义运算符>).由于运算符的粒度较小,在构建深度学习模型时,代码写出来比较冗长,比如实现卷积层:5, 9 这种方式在设计较大模型时会比较麻烦,需要程序员徒手完成各个运算符之间的连接,像一些中间变量的维度变换.运算符参数选项.多个子网络连接处极易发生问题,肉眼检查也很难发现代码中潜伏的…
[论文标题]A review on deep learning for recommender systems: challenges and remedies  (Artificial Intelligence Review,201906) [论文作者]Zeynep Batmaz 1 · Ali Yurekli 1 · Alper Bilge 1 · Cihan Kaleli 1 [论文链接]Paper(37-pages // Single column) ==================…
此示例演示如何使用名为“更快r-cnn(具有卷积神经网络的区域)”的深度学习技术来训练对象探测器. 概述 此示例演示如何训练用于检测车辆的更快r-cnn对象探测器.更快的r-nnn [1]是r-cnn [2]和快速r-nnn [3]对象检测技术的引伸.所有这三种技术都使用卷积神经网络(cnn).它们之间的区别在于它们如何选择要处理的区域以及如何对这些区域进行分类.r-cnn和快速r-概算在运行美国有线电视新闻网之前使用区域建议算法作为预处理步骤.提议算法通常是技术例如edgox [4]或选择性搜…
http://www.zhizihua.com/blog/post/602.html 说明:本教程将阐述无监督特征学习和深度学习的主要观点.通过学习,你也将实现多个功能学习/深度学习算法,能看到它们为你工作,并学习如何应用/适应这些想法到新问题上. 本教程假定机器学习的基本知识(特别是熟悉的监督学习,逻辑回归,梯度下降的想法),如果你不熟悉这些想法,我们建议你去这里 机器学习课程,并先完成第II,III,IV章(到逻辑回归) 稀疏自编码器 神经网络 反向传导算法 梯度检验与高级优化 自编码算法与…
Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主要通过Deconvnet(反卷积)来可视化卷积网络,来理解卷积网络,并调整卷积网络:本文通过Deconvnet技术,可视化Alex-net,并指出了Alex-net的一些不足,最后修改网络结构,使得分类结果提升. 摘要: CNN已经获得很好的结果,但是并没有明确的理解为什么CNN会表现的这么好,或者…
前言 对前面的东西更新了一下.地方包括: 1.GUI的更新,更友好的用户界面 2.支持用手直接画车辆区域,并且识别出来 3.将proposal.detect.fine-grained classification三个步骤分离 4.在传入Classification Net的时候,不再循环传入分类,而是将检测出的proposal一起截取形成一个image4d,共同传入alexnet.此举是为了加速. Github https://github.com/ChenJoya/Vehicle_Detect…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
9012年已经悄悄过去了1/3. 过去的100多天里,在深度学习领域,每天都有大量的新论文产生.所以深度学习研究在2019年开了怎样一个头呢? Open Data Science对第一季度的深度学习研究进行了盘点总结,推出了这一季度的十佳论文.一起来看看,TOP10都花落谁家吧. 基于PyTorch Geometric的快速图像表征学习 Fast Graph Representation Learning with PyTorch Geometric 这篇论文的作者Matthias Fey和Ja…