在NVIDIA A100 GPU上利用硬件JPEG解码器和NVIDIA nvJPEG库 根据调查,普通人产生的1.2万亿张图像可以通过电话或数码相机捕获.这样的图像的存储,尤其是以高分辨率的原始格式,会占用大量内存. JPEG指的是联合图像专家组,该组织于2017年庆祝成立25周年.JPEG标准指定了编解码器,该编解码器定义了如何将图像压缩为字节的位流并解压缩回图像. JPEG编解码器的主要目的是最小化照片图像文件的文件大小.JPEG是一种有损压缩格式,这意味着它不存储原始图像的完整像素数据.J…
NVIDIA A100 GPUs上硬件JPEG解码器和NVIDIA nvJPEG库 Leveraging the Hardware JPEG Decoder and NVIDIA nvJPEG Library on NVIDIA A100 GPUs 根据调查,平均每个人产生1.2万亿张图片,这些图片是由手机或数码相机拍摄的.这种图像的存储,特别是以高分辨率的原始格式存储,占用了大量的内存. JPEG指的是联合摄影专家组(Joint Photography Experts Group),该组于20…
在NVIDIA A100 GPU中使用DALI和新的硬件JPEG解码器快速加载数据 如今,最流行的拍照设备智能手机可以捕获高达4K UHD的图像(3840×2160图像),原始数据超过25 MB.即使考虑到令人尴尬的低HD分辨率(1280×720),原始图像也需要超过2.5 MB的存储空间.存储少至100张UHD图像将需要近3 GB的可用空间. 显然,如果以这种方式存储数据,则会很快耗尽空间.这是图像压缩派上用场的地方.众所周知的JPEG格式可以将图像大小从30 MB缩小到3 MB. 对于深度学…
NVIDIA GPU上的直接线性求解器 NVIDIA cuSOLVER库提供了密集且稀疏的直接线性求解器和本征求解器的集合,它们为计算机视觉,CFD,计算化学和线性优化应用程序提供了显着的加速.cuSOLVER库包含在NVIDIA HPC SDK和CUDA Toolkit中. cuSOLVER性能 cuSOLVER 11自动利用DMMA Tensor Core.DGX A100比DGX-2快2倍以上,这要归功于A100以及第三代NVLINK和NVSWITCH,GPU数量只有一半. cuSOLVE…
用NVIDIA A100 GPUs提高计算机视觉 Improving Computer Vision with NVIDIA A100 GPUs 在2020年英伟达GPU技术会议的主题演讲中,英伟达创始人兼首席执行官黄延森介绍了基于英伟达安培GPU架构的新英伟达A100 GPU. 在这篇文章中,我们详细介绍了A100的令人兴奋的新特性,这些特性使NVIDIA GPU成为计算机视觉工作负载的一个更好的动力.我们还展示了NVIDIA最近的两个CV研究项目:语义分割的层次多尺度注意和Bi3D:通过二元…
A100 GPU硬件架构 NVIDIA GA100 GPU由多个GPU处理群集(GPC),纹理处理群集(TPC),流式多处理器(SM)和HBM2内存控制器组成. GA100 GPU的完整实现包括以下单元: 每个完整GPU 8个GPC,8个TPC / GPC,2个SM / TPC,16个SM / GPC,128个SM 每个完整GPU 64个FP32 CUDA内核/ SM,8192个FP32 CUDA内核 每个完整GPU 4个第三代Tensor核心/ SM,512个第三代Tensor核心 6个HBM…
一沙一世界,一树一菩提,我们这个世界的深邃全部蕴藏于一个个普通的平凡当中.小小的厨房所容纳的不仅仅是人们对味道的情感,更有推动整个世界前进的动力.要想理解我们的世界,有的时候只需要细细品味一下我们所喜爱的美食即可.正因为此,我们才规划了<舌尖上的硬件>这样一个系列栏目.通过对美食的品味和体会,我们可以更好地理解许多硬件相关的原理.内涵甚至是趣闻,我们所需要为此准备的,其实仅仅是一颗平和的心而已. 在上一期的<舌尖上的硬件>栏目中,我们第一次接触到了隐藏在食物背后的其与半导体业界的神…
NVIDIA系统管理界面介绍 原文来源:https://developer.nvidia.com/nvidia-system-management-interface NVIDIA系统管理界面(nvidia-smi)是一个命令行实用程序,基于NVIDIA管理库(NVML),旨在帮助管理和监控NVIDIA GPU设备. 此实用程序允许管理员查询GPU设备状态并具有相应的权限,允许管理员修改GPU设备状态.它针对的是Tesla TM,GRID TM,Quadro TM和Titan X产品,但其他NV…
NVIDIA GPU上的Tensor线性代数 cuTENSOR库是同类中第一个GPU加速的张量线性代数库,提供张量收缩,归约和逐元素运算.cuTENSOR用于加速在深度学习训练和推理,计算机视觉,量子化学和计算物理领域的应用.使用cuTENSOR,应用程序会自动受益于常规性能的改进和新的GPU架构. cutensor性能 cuTENSOR库针对NVIDIA GPU的性能进行了高度优化.最新版本增加了对DMMA和TF32的支持. cuTENSOR的主要功能 张量收缩,缩小和元素运算 混合精度支持…
NVIDIA GPU上的随机数生成 NVIDIA CUDA随机数生成库(cuRAND)提供高性能的GPU加速的随机数生成(RNG).cuRAND库使用NVIDIA GPU中提供的数百个处理器内核,将质量随机数提高了8倍.cuRAND库包含在NVIDIA HPC SDK和CUDA Toolkit中. cuRAND性能 cuRAND还提供两个灵活的接口,使您可以从CPU上运行的主机代码或GPU上运行的CUDA函数/内核中批量生成随机数.多种RNG算法和分发选项意味着可以根据需要选择最佳解决方案. c…