学习笔记TF010:softmax分类】的更多相关文章

回答多选项问题,使用softmax函数,对数几率回归在多个可能不同值上的推广.函数返回值是C个分量的概率向量,每个分量对应一个输出类别概率.分量为概率,C个分量和始终为1.每个样本必须属于某个输出类别,所有可能样本均被覆盖.分量和小于1,存在隐藏类别:分量和大于1,每个样本可能同时属于多个类别.类别数量为2,输出概率与对数几率回归模型输出相同. 变量初始化,需要C个不同权值组,每个组对应一个可能输出,使用权值矩阵.每行与输入特征对应,每列与输出类别对应. 鸢尾花数据集Iris,包含4个数据特征.…
序列分类,预测整个输入序列的类别标签.情绪分析,预测用户撰写文字话题态度.预测选举结果或产品.电影评分. 国际电影数据库(International Movie Database)影评数据集.目标值二元,正面或负面.语言大量否定.反语.模糊,不能只看单词是否出现.构建词向量循环网络,逐个单词查看每条评论,最后单词话性值训练预测整条评论情绪分类器. 斯担福大学人工智能实验室的IMDB影评数据集: http://ai.stanford.edu/~amaas/data/sentiment/ .压缩ta…
HTML文档由各种元素组成.比如,p.table.span等等.每个元素都会对文档的表现有所影响.CSS中,每个元素都会生成一个框(传说中的盒子),其中包含元素内容. 元素可以根据它的创建方式分为两种:替换元素和非替换元素.创建方式会对盒模型的表现有所影响,后续的笔记中会看到. 替换元素:这种元素的内容部分并非由文档直接显示,而是用其他内容来替换.最常见的替换元素img,它是由文档本身之外的一个图片文件来替换的.input也是替换元素,是根据类型的值来决定内容是什么,有时内容被替换成单选钮,有时…
在讲解CSS布局之前,我们需要提前知道一些知识,在CSS中,html中的标签元素大体被分为三种不同的类型:块状元素.内联元素(又叫行内元素)和内联块状元素. 常用的块状元素有: <div>.<p>.<h1>...<h6>.<ol>.<ul>.<dl>.<table>.<address>.<blockquote> .<form> 常用的内联元素有: <a>.<…
这里所拟合模型的AIC和SC统计量的值均小于只有截距的模型的相应统计量的值,说明含有自变量的模型较仅含有常数项的要好 但模型的最大重新换算 R 方为0.0993,说明模型拟合效果并不好,可能有其他危险因素未包括到模型中 P值均远小于0,05,可以认为模型是成立的 P值均远小于0,05,说明两个自变量对食管癌发病均有影响 两个自变量的OR点估计值都大于1,且95%可信区间均不包含1,说明吸烟和饮酒引起食管癌的危险性较大,吸烟的危险性是不吸烟的2.424倍,饮酒的危险性是不饮酒的1.692倍 预测概…
CNN学习笔记:目标函数 分类任务中的目标函数 目标函数,亦称损失函数或代价函数,是整个网络模型的指挥棒,通过样本的预测结果与真实标记产生的误差来反向传播指导网络参数学习和表示学习. 假设某分类任务共N个训练样本,针对网络最后分类层第i个样本的输入特征为xi,其对应的真实标记为yi∈{1,2,...,C},另h=(h1,h2,...,hC)⊤为网络的最终输出,即样本i的预测结果,其中C为分类任务类别数. 交叉熵损失函数 交叉熵损失函数又称为Softmax损失函数,是目前卷积神经网络中最常用的分类…
前言:   此文章收录在本人的<学习笔记分享>分类中,此分类记录本人的学习心得体会,现全部分享出来希望和大家共同交流学习成长.附上分类链接:   https://www.cnblogs.com/tibbors/category/1729804.html 学习内容:堆栈 堆栈的优点:临时存储大量数据,便于查找 堆栈中越往顶部地址编号越小 压栈出栈变的都是栈顶 堆栈的操作分解: 前提操作: MOV EBX,13FFDC //BASE MOV EDX,13FFDC //TOP 操作一:压入数据 法一…
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细推导. 1. 详细推导softmax代价函数的梯度 经典的logistics回归是二分类问题,输入向量$ x^{(i)}\in\Re^{n+1}$ 输出0,1判断\(y^{(i)}\in{\{0,1\}}\),Softmax回归模型是一种多分类算法模型,如图所示,输出包含k个类型,\(y^{(i)}\in{\…
UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使用更"深"的神经网络,也即网络中包含更多的隐藏层,我们知道前一篇"无监督特征学习"只有一层隐藏层.原文深度网络概览不仅给出了深度网络优势的一种解释,还总结了几点训练深度网络的困难之处,并解释了逐层贪婪训练方法的过程.关于深度网络优势的表述非常好,贴在这里. ​ 使用深度…
读了一篇文章,用到卷积神经网络的方法来进行文本分类,故写下一点自己的学习笔记: 本文在事先进行单词向量的学习的基础上,利用卷积神经网络(CNN)进行句子分类,然后通过微调学习任务特定的向量,提高性能. 在从无监督神经语言模型中获得单词向量(Tomas Mikolov等人做过相关工作,即谷歌的word2vector完成,将原始的1/V模型变化为分布式低维表示)后利用一层卷积层的CNN进行学习. 模型结构: 首先输入具有两个通道,分别对应static和non-static的方式,其中static方式…