Apriori算法的C++实现】的更多相关文章

前言:这是一个老故事, 但每次看总是能从中想到点什么.在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售.但是这个奇怪的举措却使尿布和啤酒的销量双双增加了.这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道.原来,美国的妇女们经常会嘱咐她们的丈夫下班以后要为孩子买尿布.而丈夫在买完尿布之后又要顺手买回自己爱喝的啤酒,因此啤酒和尿布在一起购买的机会还是很多的. 是什么让沃尔玛发现了尿布和啤酒之间的关系呢?正是商家通过对超市一年多原始交易数字进行详细的分析,才发…
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档适用人员:技术人员 提纲: 所谓异常流量 如何识别异常流量 Apriori如何工作 如何让 Nginx 拦截可疑 IP 0x00,所谓异常流量 有害的异常流量大概分为以下几种: 僵尸网络中的节点对主站发起无目的的密集访问: 黑客.白帽子或某些安全公司为了做漏洞扫描,对主站各个 Web 工程发起字典式…
参考文献: 关联分析之Apriori算法…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(association analysis)或者关联规则学习(association rule learning) 这是非监督学习的一个特定的目标:发现数据的关联(association)关系.简单的说,就是那些数据(或者数据特征)会一起出现. 关联分析的目标包括两项:发现频繁项集和发现关联规则.首先需要找到频繁项集,然后才能…
前言: 众所周知,关联规则挖掘是数据挖掘中重要的一部分,如著名的啤酒和尿布的问题.今天要学习的是经典的关联规则挖掘算法--Apriori算法 一.算法的基本原理 由k项频繁集去导出k+1项频繁集. 二.算法流程 1.扫描事务数据库,找出1项集,并根据最小支持度计数,剪枝得出频繁1项集.k=1. 2.由频繁k项集进行连接步操作,形成候选的k+1项集,并扫描数据库,得出每一项的支持度计数,并根据最小支持度计数,剪枝得到频繁k+1项集. 迭代的进行第2步直到频繁k项集是空的. 3.由频繁项集构造关联规…
首先简单描述一下Apriori算法:Apriori算法分为频繁项集的产生和规则的产生. Apriori算法频繁项集的产生: 令ck为候选k-项集的集合,而Fk为频繁k-项集的集合. 1.首先通过单遍扫描数据集,确定每个项的支持度.一旦完成这一步,就可以得到所有频繁1-项集的集合F1 2.接下来,该算法将使用上一次迭代的发现的频繁(k-1)-项集,产生新的候选k-项集.候选的产生使用apriori-gen函数实现. 3.为了对候选项的支持度的计算,需要再扫描一遍数据集.使用子集函数确定包含在每一个…
1 Apriori介绍 Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集.首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集.最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则. 其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的.因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项…
学习数据挖掘工具中,下面使用4种工具来对同一个数据集进行研究. 数据描述:下面这些数据是15个同学选修课程情况,在课程大纲中共有10门课程供学生选择,下面给出具体的选课情况,以ARFF数据文件保存,名称为TestStudenti.arff.我使用Apriori算法期望挖掘出学生选课的关联规则. @relation test_studenti @attribute Arbori_binari_de_cautare {TRUE, FALSE}@attribute Arbori_optimali {T…
购物篮分析是一个很经典的数据挖掘案例,运用到了Apriori算法.下面从网上下载的一超市某月份的数据库,利用Apriori算法进行管理分析.例子使用Python+MongoDB 处理过程1 数据建模(将Excel中的数据写入到MongoDB数据库), 2 从数据库中读取数据进行分析. Excel文件http://download.csdn.net/detail/artscrafts/6805689 案例配置文件 setting.py data_source = 'supermarket.xls'…
apriori算法是关联规则挖掘中很基础也很经典的一个算法,我认为很多教程出现大堆的公式不是很适合一个初学者理解.因此,本文列举一个简单的例子来演示下apriori算法的整个步骤. 下面这个表格是代表一个事务数据库D,其中最小支持度为50%,最小置信度为70%,求事务数据库中的频繁关联规则. Tid 项目集 1  面包,牛奶,啤酒,尿布 2  面包,牛奶,啤酒 3  啤酒,尿布 4  面包,牛奶,花生 apriori算法的步骤如下所示: (1)生成候选频繁1-项目集C1={{面包},{牛奶},{…