1. Multiple Features note:X0 is equal to 1 2. Feature Scaling Idea: make sure features are on a similiar scale, approximately a -1<Xi<1 range For example: x1 = size (0-2000 feet^2) max-min or standard deviation x2 = number of bedrooms(1-5) The conto…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况.在下图的例子中,…
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示为  公式可以简化为 两个矩阵相乘   其实就是所有参数和变量相乘再相加  所以矩阵的乘法才会是那样 那么他的代价函数就是 同样是寻找使J最小的一系列参数 python代码为 比如这种     那么X是[1,2,3]   y也是[1,2,3]   那么令theta0 = 0  theta1 = 1 …
Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gradient Descent for Multiple Variables4.3 梯度下降法实践 1-特征缩放 Gradient Descent in Practice I - Feature Scaling4.4 梯度下降法实践 2-学习率 Gradient Descent in Practice…
Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D [3]学习速率 α Answer: B,因为第一个比第二个下降的快.第三个上升说明α太大 [4]Mean Normalization Answer:C [5]Normal Equation Answer:D Linear Regression with Multiple Variables [1]…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, 1 % Exercise 1: Linear regression with multiple variables %% Initialization %% ================ Part 1: Featu…
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(features),使问题变成多元线性回归问题. 多元线性回归将通过更多的输入特征,来预测输出.上面有新的Notation(标记)需要掌握. 相比于之前的假设: 我们将多元线性回归的假设修改为: 每一个xi代表一个特征:为了表达方便,令x0=1,可以得到假设的矩阵形式: 其中,x和theta分别表示: 所…
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)--房屋面积x.我们希望使用这个特征量来预测房子的价格.我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(变量)),我们还知道卧室的数量.楼层的数量以及房屋的使用年限,那么这就给了我们更多可以用来预测房屋价格的信息. 即,支持多变量的假设为:…
Linear Regression with One Variable Model Representation Recall that in *regression problems*, we are taking input variables and trying to map the output onto a *continuous* expected result function. Linear regression with one variable is also known…
代价函数cost function 公式: 其中,变量θ(Rn+1或者R(n+1)*1) 向量化: Octave实现: function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for linear regression…
一.Multiple Features 这节课主要引入了一些记号,假设现在有n个特征,那么: 为了便于用矩阵处理,令\(x_0=1\): 参数\(\theta\)是一个(n+1)*1维的向量,任一个训练样本也是(n+1)*1维的向量,故对于每个训练样本:\(h_\theta(x)=\theta^Tx\). 二.Gradient Decent for Multiple Variables 类似地,定义代价函数: 同时更新参数直到\(J\)收敛: \[\theta_j:=\theta_j-\alph…
1.Linear Regression with One variable Linear Regression is supervised learning algorithm, Because the data set is given a right answer for each example. And we are predicting real-valued output so it is a regression problem. Block Diagram: 2. Cost Fu…
https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables 1. Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the…
我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(…
4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).…
前面还有一章主要讲解,基本的Linear Algebra线性代数的知识,都比较简单,这里就直接跳过了. Speaker: Andrew Ng 1. Multiple featues 训练集的特征变成了多个,就是有多个的输入变量,对应一个的输出变量,但仍然是线性的关系. 其中columns为 n 类特征,rows为 m 个samples,代表 i 个sample数据,代表第 i 个sample数据的第 j 个特征的值. 接下来我们定义在多变量下的: 其中针对通常的情况认为为1,这里通过向量表示为:…
1.线性回归介绍 X指训练数据的feature,beta指待估计得参数. 详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B 使用最小二乘法拟合的普通线性回归是数据建模的基本方法. 令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式. 最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小.如下图所示,使所有红点(训练…
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,...,xn) 表示为: =1,则公式转化为: .加载训练数据 数据格式为: X1,X2,Y 2104,3,399900 1600,3,329900 2400,3,369000 1416,2,232000 将数据逐行读取,用逗号切分,并放入np.array #加载数据 def load_exdata(fil…
4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性(可选) 4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).…
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFC…
4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性(可选) 4.1  多维特征 目前为止,探讨了单变量/特征的回归模型,现在对房价模型增加更多的特征 增添更多特征后,引入一系列新的注释: n  代表特征的数量…
1. notation: n = number of features x(i) = input (features) of ith training example  = value of feature j in ith training example 2. Hypothesis: 3. Cost function: 4. Gradient descent: Repeat { } substituting cost function, then Repeat { (simultaneous…
引入额外标记 xj(i) 第i个训练样本的第j个特征 x(i) 第i个训练样本对应的列向量(column vector) m 训练样本的数量 n 样本特征的数量 假设函数(hypothesis function) 公式: 向量化: 其中:令x0=1,x0引入的目的是为了"美化",以便于矩阵计算 使用矩阵计算: 令X存储训练样本,形如: 我们就可以这样计算假设:…
4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后,我们引入一系列新的注释: n 代表特征的数量 x(i)代表第 i个训练实例,是特征矩阵中的第$i$行,是一个向量(vector). 比方说,上图的 xj(i)代表特征矩阵中第 i行的第 j个特征,也就是第 i个训练实例的第 j个特征. 如上图的x(2)2=3,x(2)3=2, 支持多变量的假设 h…
编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matlab工作区内并将machine-learning-live-scripts内的ex1.mlx拖入到machine-learning-ex1\ex1中 在命令提示符区输入subimit命令,并填写邮箱与提交凭证来提交作业. 1.A simple MATLAB function 修改warmUpExerc…
一:单变量线性回归(Linear regression with one variable) 背景:在某城市开办饭馆,我们有这样的数据集ex1data1.txt,第一列代表某个城市的人口,第二列代表在该城市开办饭馆的利润. 我们将数据集显示在可视图,可以看出跟某个线性方程有关,而此数据只有单个变量(某城市人口),故接下来我们就使用单变量线性回归拟合出一条近似满足于上数据的直线. 1,单变量的脚本ex1.m: %% Machine Learning Online Class - Exercise…
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更新,希望大家多多批评指正. Supervised Learning(监督学习) 在监督学习中,我们的数据集包括了算法的输出结果,比如具体的类别(分类问题)或数值(回归问题),输入和输出存在某种对应关系. 监督学习大致可分为回归(classification)和分类(regression). 回归:对…
之前一直在讲机器为什么能够学习,从这节课开始讲一些基本的机器学习算法,也就是机器如何学习. 这节课讲的是线性回归,从使Ein最小化出发来,介绍了 Hat Matrix,要理解其中的几何意义.最后对比了linear regression 和 binary classification,并说明了linear regression 为什么可以用来做 binary classification .整节课的内容可以用下面的图来表示: 与其他课程的线性回归相比,这门课要更加理论,看完后对这门课有了更深的理解…