Notes on the Dirichlet Distribution and Dirichlet Process In [3]: %matplotlib inline   Note: I wrote this post in an IPython notebook. It might be rendered better on NBViewer. Dirichlet Distribution The symmetric Dirichlet distribution (DD) can be co…
The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1) Dirichlet分布可以看做是分布之上的分布.如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}.现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现的次数与试验总数的比值估计这个面出现的概率,则我们得到六面出现的概率,分别为{0.2,0.2,0.2,0.2,…
From: https://www.cs.cmu.edu/~scohen/psnlp-lecture6.pdf 不错的PPT,图示很好. 伯努利分布 和 多项式分布 Binomial Distribution的共轭先验Beta Distribution. 贝塔分布的范围符合色子的每一面的概率理解. 同理: Multinomials Distribution的共轭先验Dirichlet Distribution. Ref: https://docs.scipy.org/doc/numpy/refe…
Beta分布: 二项式分布(Binomial distribution): 多项式分布: Beta分布: Beta分布是二项式分布的共轭先验(conjugate prior) Dirichlet Distribution: 共轭先验可以使得先验分布和后验分布的形式相同 如果先验分布和似然函数可以使得先验分布和后验分布有相同的形式,那么就称先验分布与似然函数是共轭的 likelihood 似然函数 conjugate prior 共轭先验 posterior 后验 Normal  均匀分布 Nor…
The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose occurence is uncertain. Sample space refers to the set of all possible events, denoted as . Some properties: Sum rule: Union bound: Conditional probabi…
1. Topic Models Topic models are based upon the idea that documents are mixtures of topics, where a topic is a probabilistic distribution over words. A topic model is a generative model for documents: it specifies a simple probabilistic procedure by…
来源:http://hi.baidu.com/vyfrcemnsnbgxyd/item/2f10ecc3fc35597dced4f88b Dirichlet Process(DP)是一个很重要的统计模型,其可以看做是Dirichlet分布的一种在连续空间的推广过程.在统计学习中,DP尤其是其变形有很多 重要应用,是非参贝叶斯学习的重要方法.不过目前缺乏对于这样一个模型的入门级的介绍,本文将会介绍如何从Dirichlet分布演变到 Dirichlet Process,从而帮助大家更容易地踏入这个领…
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: 做n次伯努利实验,每次实验为1的概率为p,实验为0的概率为1-p;有k次为1,n-k次为0的概率,就是二项分布B(n,p,…
Dirichlet分布可以看做是分布之上的分布.如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}.现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现的次数与试验总数的比值估计这个面出现的概率,则我们得到六面出现的概率,分别为{0.2,0.2,0.2,0.2,0.1,0.1}.现在,我们还不满足,我们想要做10000次试验,每次试验中我们都投掷骰子10…
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli trial)是只有两种可能结果的单次随机试验. 即:对于一个随机变量而言,P(X=1)=p以及P(X=0)=1-p.一般用抛硬币来举例.另外,此处也描述了伯努利过程: 一个伯努利过程(Bernoulli process)是由重复出现独立但是相同分布的伯努利试验组成,例如抛硬币十次. 维基百科中,伯努利过程…