Ref: Spark3.0 preview预览版尝试GPU调用(本地模式不支持GPU) 预览版本:https://archive.apache.org/dist/spark/spark-3.0.0-preview/ Ref: Apache Spark3.0什么样?一文读懂Apache Spark最新技术发展与展望 2. Accelerator Aware Scheduling Spark依赖Accelerator Aware Scheduling来感知GPU计算资源,从而调度深度学习任务.实际上…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 Spark Shell 进行交互式分析 基础 Dataset 上的更多操作 缓存 独立的应用 快速跳转 本教程提供了如何使用 Spark 的快速入门介绍.首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scal…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
Spark快速入门 - Spark 1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 快速入门(Quick Start) 本文简单介绍了Spark的使用方式.首先介绍Spark的交互界面的API使用,然后介绍如何使用Java.Scala以及Python编写Spark应用.详细的介绍请阅读Spark Programming Guide. 在按照本文进行操作之前,请确保已安装Spark.本文中的所有操作没有使用HDFS,所以您可以安装任何版本的Hadoop.…
为了支持hbase0.98.6,需要重新编译spark 1. 下载spark 1.1.0源代码,以及 scala-2.10.4的bin包. 将环境变量 SCALA_HOME 设置为 scala-2.10.4 的目录位置. 2. 下载较新的pom.xml (https://github.com/tedyu/spark) 将该repository中的 spark/pom.xml和spark/examples/pom.xml下载下来,覆盖至用于编译的spark源代码中. 3. 进入源代码目录编译 ex…
[时间]2014年11月18日 [平台]Centos 6.5 [工具]scp [软件]jdk-7u67-linux-x64.rpm spark-worker-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm spark-core-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm spark-history-server-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.…
What's new in Spark 1.2.0 1.2.0 was released on 12/18, 2014 在2014年5月30日公布了Spark 1.0 和9月11日公布了Spark1.1.后,Spark 1.2 最终在12月18日公布.作为1.X时代的第三个release,它有什么重要更新呢? 1.    Spark Core:性能和易用性的改进 对于超大规模的Shuffle,Spark Core在性能和稳定性方面做了两个重要的更新: 一)     Communication M…
Spark 概述 Apache Spark 是一个快速的, 多用途的集群计算系统. 它提供了 Java, Scala, Python 和 R 的高级 API,以及一个支持通用的执行图计算的优化过的引擎. 它还支持一组丰富的高级工具, 包括使用 SQL 处理结构化数据处理的 Spark SQL, 用于机器学习的 MLlib, 用于图形处理的 GraphX, 以及 Spark Streaming. 下载 从该项目官网的 下载页面 获取 Spark. 该文档用于 Spark 2.2.0 版本. Spa…