title: [线性代数]4-1:四个正交子空间(Orthogonality of the Four Subspace) categories: Mathematic Linear Algebra keywords: Orthogonality Four Subspace Orthogonal Complements Fundamental Theorem of Linear Algebra Combining Bases from Subspaces Split toc: true date:…
title: [线性代数]3-6:四个子空间的维度(Dimensions of the Four Subspaces) categories: Mathematic Linear Algebra keywords: Four Subspaces toc: true date: 2017-09-25 15:21:01 Abstract: 四个向量空间的dimensions的一些性质 Keywords: Dimensions,Four Subspaces 开篇废话 这几天在一边完成线性代数的博客一边…
OpenCASCADE Quaternion eryar@163.com Abstract. The quaternions are members of a noncommutative division algebra first invented by William Rowan Hamilton. The idea for quaternions occurred to him while he was walking along the Royal Cannal on his way…
参考: http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/how-does-matrix-work-part-1 http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/how-does-matrix-work-part-2 在scratchapixel…
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描…
第三章 使用Python进行数字计算 尽管IPython强大的shell和扩展后的控制台能被任何Python程序员使用,但是这个工具最初是科学奖为科学家设计的.它的主要设计目标就是为使用Python进行交互式科学计算提供一个方便易用的环境. IPython只是为NumPy.Scipy.Pandas.Matplotlib等包提供了一个交互式接口,其本身并不提供科学计算的功能.这些工具组合在一起就形成了可以匹敌如Matlab.Mathmatic这样被广泛使用的商业产品的科学计算框架. NumPy提供…
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter (补充: Chuong Do) 时间:2016年6月 翻译:@MOLLY(mollyecla@gmail.com) @OWEN(owenj1989@126.com) 校正:@寒小阳(hanxiaoyang.ml@gmail.com) @龙心尘(johnnygong.ml@gmail.com)  出处:…
OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:太阳火神的漂亮人生 -  本博客专注于 敏捷开发及移动和物联设备研究:iOS.Android.Html5.Arduino.pcDuino.否则,出自本博客的文章拒绝转载或再转载,谢谢合作. 下面网易公开课相比較而言,可汗学院的视频更基础一些.字幕翻译也都不错.网易精品来着…
概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最为直接的就是解方程组,进一步衍生出来最小二乘法等等. 这一部分主要讲了三个工具的各自的一些基本方法,以及用其解方程组的一套理论.另外,由于是总结,就不按照课程的顺序,而且各点之间都有穿插. 向量(Vector) 对于向量而言,大部分与中学一致,基本的就不说了,关注重点. 线性相关性 线性相关性用于描…
数组的累加(拼接) 在前面讲了使用切片方法能够对数组进行切分,使用copy对切片的数组进行复制,那么数组该如何拼接呢? a1 = np.full((2,3),1)#填充数组 a2 = np.full((3,3),2) a3 = np.full((2,3),3) >>a3 array([[ 3., 3., 3.], [ 3., 3., 3.]]) vstack 竖直方向拼接数组 a4 = np.vstack((a1,a2,a3)) #a1,a2,a3必须有相同的列数 >> a4 [[…