【零基础】神经网络优化之L1、L2】的更多相关文章

一.序言 前面的文章中,我们逐步从单神经元.浅层网络到深层网络,并且大概搞懂了“向前传播”和“反向传播”的原理,比较而言深层网络做“手写数字”识别已经游刃有余了,但神经网络还存在很多问题,比如最常见的两个问题:“过拟合”和“欠拟合”,下图中从左到右依次是“欠拟合”.“刚刚好”.“过拟合”. 简单点说,欠拟合是我们学习到的w没能很好地“满足”训练数据的特征,一般是因为训练数据太少.训练次数不够.神经网络太简单等问题,优化地方法也比较容易,有针对性地增加训练数据.训练次数或使用更复杂的网络即可.过拟…
一.序言 Adam是神经网络优化的另一种方法,有点类似上一篇中的“动量梯度下降”,实际上是先提出了RMSprop(类似动量梯度下降的优化算法),而后结合RMSprop和动量梯度下降整出了Adam,所以这里我们先由动量梯度下降引申出RMSprop,最后再介绍Adam.不过,由于RMSprop.Adam什么的,真的太难理解了,我就只说实现不说原理了. 二.RMSprop 先回顾一下动量梯度下降中的“指数加权平均”公式: vDW1 = beta*vDW0 + (1-beta)*dw1 vDb1 = b…
一.前言 回顾一下前面讲过的两种解决过拟合的方法: 1)L0.L1.L2:在向前传播.反向传播后面加个小尾巴 2)dropout:训练时随机“删除”一部分神经元 本篇要介绍的优化方法叫mini-batch,它主要解决的问题是:实际应用时的训练数据往往都太大了,一次加载到电脑里可能内存不够,其次运行速度也很慢.那自然就想到说,不如把训练数据分割成好几份,一次学习一份不就行了吗?前辈们试了试发现不仅解决了内存不足的问题,而且网络“收敛”的速度更快了.由于mini-batch这么棒棒,自然是神经网络中…
一.序言 dropout和L1.L2一样是一种解决过拟合的方法,梯度检验则是一种检验“反向传播”计算是否准确的方法,这里合并简单讲述,并在文末提供完整示例代码,代码中还包含了之前L2的示例,全都是在“深层神经网络解析”这篇基础之上修改的. 二.dropout 简单来说dropout就是在每次训练时“随机”失效网络中部分神经元,大概就是下图这么个意思. 让神经元随机消失办法很简单,我们将每一层的输出Y中部分位,置为0即可.回顾一下神经元的输出值Y: A = np.dot(w, IN) + b Y…
一.完善常用概念和细节 1.神经元模型: 之前的神经元结构都采用线上的权重w直接乘以输入数据x,用数学表达式即,但这样的结构不够完善. 完善的结构需要加上偏置,并加上激励函数.用数学公式表示为:.其中f为激励函数. 神经网络就是由以这样的神经元为基本单位构成的. 2.激活函数 引入非线性激活因素,提高模型的表达力. 常用的激活函数有: (1)relu函数,用 tf.nn.relu()表示 (2)sigmoid函数,用 tf.nn.sigmoid()表示 (3)tanh函数,用 tf.nn.tan…
前文链接:狗屁不通的“视频专辑:零基础学习C语言(小甲鱼版)”(1) 小甲鱼在很多情况下是跟着谭浩强鹦鹉学舌,所以谭浩强书中的很多错误他又重复了一次.这样,加上他自己的错误,错谬之处难以胜数. 由于拙著<品悟C>已经全面揭露了谭浩强书中的种种错谬,因此,下面视频中凡是谭浩强原来就有的错误,就只标出不细解了.重点讲小甲鱼自己创造的“亮点”.各位网友如对只标出而未解释的地方有疑问,可在评论中提出,我再详细解释. 下面截图来自“视频专辑:零基础学习C语言(小甲鱼版)”第二集.从这一集我们可以清楚地看…
1.系列文章引言 1.1 适合谁来阅读? 本系列文章尽量使用最浅显易懂的文字.图片来组织内容,力求通信技术零基础的人群也能看懂.但个人建议,至少稍微了解过网络通信方面的知识后再看,会更有收获.如果您大学学习过<计算机网络>这门课,那么一定不要错过本系列文章. 特别推荐即时通讯开发者来阅读,因为针对移动弱网的问题,确实可以找到很多有价值的答案. 友情提示:本系列文章可能涉及以下通信技术范畴,如您有兴趣,也可自行系统地学习:   1.2 本系列文章的初衷 作为即时通讯(IM.消息推送等应用场景)相…
[来源申明]本文原文来自:微信公众号“鲜枣课堂”,官方网站:xzclass.com,原题为:<通信交换的百年沧桑(上)>,本文引用时已征得原作者同意.为了更好的内容呈现,即时通讯网在收录时内容有稍许调整,转载时请注明原文来源信息,请尊重原作者的劳动. 1.本系列文章目录 <IM开发者的零基础通信技术入门(一):通信交换技术的百年发展史(上)>(* 本文) <IM开发者的零基础通信技术入门(二):通信交换技术的百年发展史(下)> <IM开发者的零基础通信技术入门(三…
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和L2正则化可以看做是损失函数的惩罚项.所谓『惩罚』是指对损失函数中的某些参数做一些限制.对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归).下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1α||w||1即为L1正则…
1.你是如何学习openstack的?2.你对openstack的组件了解多少?3.你认为openstack该如何学习? 一直想写关于openstack的方面的内容,今天终于整理完成.算是完成一桩心事,内容整合来自: 零基础学习openstack(上)[中级篇] 零基础学习openstack(下)[中级篇] 是在 零基础学习openstack[初级篇]基础上的一个继续: 初级篇,我们主要是有这么一个概念,openstack的组成openstack由哪些部分来组成: Identity(代号为“Ke…