Lasso回归的坐标下降法推导】的更多相关文章

目标函数 Lasso相当于带有L1正则化项的线性回归.先看下目标函数:RSS(w)+λ∥w∥1=∑Ni=0(yi−∑Dj=0wjhj(xi))2+λ∑Dj=0∣wj∣RSS(w)+λ∥w∥1=∑i=0N(yi−∑j=0Dwjhj(xi))2+λ∑j=0D∣wj∣ RSS(w)+\lambda \Vert w\Vert_1=\sum_{i=0}^{N}(y_i-\sum_{j=0}^D{w_jh_j(x_i)})^2+\lambda \sum_{j=0}^{D}|w_j| RSS(w)+λ∥w∥1…
坐标下降法(coordinate descent method)求解LASSO推导 LASSO在尖点是singular的,因此传统的梯度下降法.牛顿法等无法使用.常用的求解算法有最小角回归法.coordinate descent method等. 由于coordinate descent method是相对较简单的做法,放在第一个介绍. 坐标下降法思想 坐标下降法基于的思想很简单,就是当面对最小化一个多元函数的问题时,我们每一次迭代的时候只改变一个目标变量的值.也就是固定其他变量不动,只在该变量…
前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结.里面对线程回归的正则化也做了一个初步的介绍.提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归.但是对于Lasso回归的解法没有提及,本文是对该文的补充和扩展.以下都用矩阵法表示,如果对于矩阵分析不熟悉,推荐学习张贤达的<矩阵分析与应用>. 1. 回顾线性回归 首先我们简要回归下线性回归的一般形式: \(h_\mathbf{\theta}(\mathbf{X}) = \mathbf{X\theta…
本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ...,x_n) \tag{1} \] \[Y = f(X) = a_1x_1 + a_2x_2 + ... a_nx_n + b \tag{2} \] 来预测 \(Y\)的数值.例如对于人的两个属性 (鞋码,体重) 来预测 身高 .从上面来看线性模型的表达式简单.比较容易建模,但是却有很好的解释性.比如…
1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适当的特征和数据用来训练:但往往现实生活中影响结果的因素是很多的,也就是说会有很多个特征值,所以训练模型的时候往往会造成过拟合的情况,如右边的坐标所示. 1.2公式 以图中的公式为例,往往我们得到的模型是: 为了能够得到中间坐标的图形,肯定是希望θ3和θ4越小越好,因为这两项越小就越接近于0,就可以得…
回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出. 那么,什么是线性回归,什么是非线性回归呢? 线性回归与非线性回归 前面说了,我们的回归模型是一个函数是吧,那么线性回归就是模型函数是由若干个基本函数线性加权得到的函数.也就是每一个基本函数前面都有一个权值来调和自己对…
Lasso 是一个线性模型,它给出的模型具有稀疏的系数(sparse coefficients).它在一些场景中是很有用的,因为它倾向于使用较少参数的情况,能够有效减少给定解决方案所依赖变量的个数.因此,Lasso 及其变体是压缩感知(compressed sensing)领域的基础.在某些特定条件下,它能够恢复非零权重的精确解. 在数学公式表达上,它由一个带有l1先验的正则项的线性模型组成.其最小化的目标函数是: min w 1 2 n s a m p l e s | | X w − y |…
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,这个约束项被叫做正则化项(regularizer).在线…
转自:https://blog.csdn.net/dang_boy/article/details/78504258 https://www.cnblogs.com/Belter/p/8536939.html https://www.cnblogs.com/Belter/p/8536939.html  (这个也写的很好,只不过还没看) 1.最小二乘法则 假设我们有n个样本数据,每个数据有p个特征值,然后p个特征值是线性关系. 即对应的线性模型 写成矩阵的形式即是Y=XA,误差B矩阵:即B=Y-X…
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost),然后用梯度下降法找到一组使 mse 最小的权重. lasso 回归和岭回归(ridge regression)其实就是在标准线性回归的基础上分别加入 L1 和 L2 正则化(regularization). 本文的重点是解释为什么 L1 正则化会…