题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n<32000,0<m<32000),再连接格点(p,0)(p>0),最后回到原点. 牛可以在不碰到电网的情况下被放到电网内部的每一个格点上(十分瘦的牛).如果一个格点碰到了电网,牛绝对不可以被放到该格点之上(或许Farmer John会有一些收获).那么有多少头牛可以被放到农夫约翰的电网…
P2735 电网 Electric Fences 11通过 28提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n<32000,0<m<32000),再连接格点(p,0)(p>0),最后回到原点. 牛可以在不碰到电网的情况下被放…
https://www.luogu.org/problemnew/show/P2735 定理什么的最讨厌了,匹克定理?不会,也不想学. 粉色的为电网,将图中的电网我们将他构造一个矩形,然后蓝色和绿色的的补齐. 那么我们的答案就是:矩阵中的点数- 蓝色三角形中的点数- 绿色三角形中的点数. 然后我们单独拿出一个三角形来考虑. 从箭头开始向左考虑, 我们将这个三角形一点一点的扩大,看每次能覆盖几个点. 随着h不断变大那么,不断有点被覆盖,那么不断加入的点的个数就是$$ \lfloor \frac{b…
题目传送门 这个东西,本来我是用求出两条一次函数解析式然后判断在x坐标下的y坐标值来做的 首先因为没考虑钝角三角形,WA了 然后又因为精度处理不好又WA了 一气之下,只能去网上查了查那个皮克定理 首先用皮克定理需要知道:在(0,0)到(n,m)这条线段上的整点个数有gcd(n,m)+1个,至于怎么证明,我没有深究(会用不就完了 这是对于一条过原点的线段,不过原点的线段呢?我是这样理解的:我把坐标系的原点平移到了该线段的的某个端点上,以这个点的坐标为原点,把上面的式子写出来,然后......就解决…
特别声明:紫书上抄来的代码,详见P198 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为123804765),找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变. 输入输出格式 输入格式: 输入初试状态,一行九个数字,空格用0表示 输出格式: 只有一行,该行只有一个数字,表示从初始状态到目标状态需要的最少移动次数…
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[1,k],i\neq j,b_i\)与\(b_j\)互质) \(\begin{cases}n\equiv a_1(\mod b_1)\\n\equiv a_2(\mod b_2)\\......\\n\equiv a_k(\mod b_k)\end{cases}\) 设\(lcm=\prod_{i=…
题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛 题目描述 在艾泽拉斯,有n个城市.编号为1,2,3,...,n. 城市之间有m条双向的公路,连接着两个城市,从某个城市到另一个城市,会遭到联盟的攻击,进而损失一定的血量. 没经过一个城市,都会被收取一定的过路费(包括起点和终点).路上并没有收费站. 假设1为暴风城,n为奥格瑞玛,而他的血量最多为b,出发时他的血量是满的.…
点此看题面 大致题意: 给你\(n\)个点,让你求鱼形图的数量. 核心思路 首先,考虑到\(n\)这么小,我们可以枚举线段\(AD\),再去找符合条件的\(BC,EF\). 然后,不难发现\(BC\)与\(EF\)互不影响,因此我们可以分开求对于已知\(AD\)的\(BC\)与\(EF\)的方案数,然后将其相乘. 那么我们现在的问题就在于,如何求出\(BC\)与\(EF\)的方案数了. \(BC\)的方案数 预处理 考虑到\(AB=AC,BD=CD\),用我这点可怜的初中数学知识,都能证明出\(…
题目描述 在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界.必须等一个油滴扩展完毕才能放置下一个油滴.那么应该按照怎样的顺序在这N个点上放置油滴,才能使放置完毕后所有油滴占据的总体积最大呢?(不同的油滴不会相互融合) 注:圆的面积公式V=pi*r*r,其中r为圆的半径. 输入输出格式 输入格式: 第1行一个整数N. 第2行为长方形边框一个顶点及其对角顶点的坐标,x,y,x’,y’. 接下去N行,每行…
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}…