题目描述 S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教.绝地教都是常见的信仰. 为了方便,我们用不同的正整数代表各种宗教, S国的居民常常旅行.旅行时他们总会走最短路,并且为了避免麻烦,只在信仰和他们相同的城市留宿.当然旅程的终点也是信仰与他相同的城市.S国政府为每个城市标定了不同的旅行评级,旅行者们常会记下途中(包括起点和终点)留宿过的城市的评级总和或最大值. 在S国的历史上常会发生以下…
「SDOI2014」重建 题意 给一个图\(G\),两点\((u,v)\)有边的概率是\(p_{u,v}\),求有\(n-1\)条边通行且组成了一颗树的概率是多少. 抄了几个矩阵树定理有趣的感性说法 矩阵树定理的度数矩阵记录的是每个点的边权和,邻接矩阵记录的是边权,求的则是所有生成树的边权乘积和 考虑Kirchhoff矩阵的意义:\(K[G]=D[G]−A[G]=B[G]B^T[G]\),之所以能够进行生成树计数是对于其伴随矩阵在计数\(n−1\)条边的集合时,当\(n−1\)条边中存在环就会产…
「SDOI2014」Lis 题目描述 给定序列 \(A\),序列中的每一项 \(A_i\) 有删除代价 \(B_i\) 和附加属性 \(C_i\). 请删除若干项,使得 \(A\) 的最长上升子序列长度减少至少 \(1\),且付出的代价之和最小,并输出方案. 如果有多种方案,请输出将删去项的附加属性排序之后,字典序最小的一种. \(T\le 5,1\le n\le 700,1\le A_i,B_i,C_i\le 10^9\) 上午想这个题的时候,有一种迷之直觉,让我去做网络流24题的最长不下降子…
「SDOI2014」数数 题目描述 我们称一个正整数 \(N\) 是幸运数,当且仅当它的十进制表示中不包含数字串集合 \(S\) 中任意一个元素作为其子串. 例如当 \(S=(\)22, 333, 0233\()\) 时,233 是幸运数,2333.20233.3223 不是幸运数. 给定 \(N\) 和 \(S\),计算不大于 \(N\) 的幸运数个数. 输入格式 输入的第一行包含整数 \(N\). 接下来一行一个整数 \(M\),表示 \(S\) 中元素的数量. 接下来 \(M\) 行,每行…
「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \((x, y)\) 的点积的最大值.集合初始时为空. 对于所有的数据,\(1 \leq N \leq 4 \times 10^5\),操作中的向量坐标满足 \(|x|,|y| \leq 10^8\),询问满足 \(1 \leq L \leq R \leq T\),其中 \(T\) 为已经加入的向量个数.…
[信息学奥赛一本通]题解目录 $ \large -> OJ$ $ problem1000 $ \(Answer\) - > $ \large 1000$ $ problem1001 $ \(Answer\) - > $ \large 1001$ $ problem1002 $ \(Answer\) - > $ \large 1002$ $ problem1003 $ \(Answer\) - > $ \large 1003$ $ problem1004 $ \(Answer\…
「JSOI2013」旅行时的困惑 传送门 由于我们的图不仅是一个 \(\text{DAG}\) 而且在形态上还是一棵树,也就是说我们为了实现节点之间互相可达,就必须把每条边都覆盖一次,因为两个点之间的路径是唯一的. 那么题意就变成了:每次在图上选出一条路径,覆盖上面的边,求最小的路径数使得所有边都被覆盖至少一次. 看到这里我不禁联想起这道题 那么对于这道题我们就让源点 \(S\) 向所有点连上界为 \(+\infty\) ,下界为 \(0\) 的边,所有点向汇点 \(T\) 连边同理,然后原图中…
「JSOI2010」旅行 传送门 比较妙的一道 \(\text{DP}\) 题,思维瓶颈应该就是如何确定状态. 首先将边按边权排序. 如果我们用 \(01\) 串来表示 \(m\) 条边是否在路径上,那么我们就可以通过钦定前 \(x\) 条边在路径上来确定目标状态. 其中有的边消耗了魔法使用次数,有的没消耗. 那么我们就可以设 \(dp[i][j][k]\) 表示到点 \(i\) ,经过了前 \(j\) 条被钦定边,并且使用了 \(k\) 次魔法的最短路,那么转移就是(假设我们现在要从点 \(u…
目录 2019.1.27 #10082. 「一本通 3.3 例 1」Word Rings 题意 思路 #10083. 「一本通 3.3 例 2」双调路径 题意 思路 #10084. 「一本通 3.3 练习 1」最小圈 题意 思路 #10085. 「一本通 3.3 练习 2」虫洞 Wormholes 题意 思路 #10086. 「一本通 3.3 练习 3」Easy SSSP 题意 思路 #10087. 「一本通 3.4 例 1」Intervals 题意 思路 #10088. 「一本通 3.4 例…
题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1.x 和a0 的最大公约数是a1:2.x 和b0 的最小…