tensorflow2.0手写数字识别】的更多相关文章

import tensorflow as tf import matplotlib.pyplot as plt import numpy as np datapath = r'D:\data\ml\mnist.npz' (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(datapath) x_train = tf.keras.utils.normalize(x_train, axis=1) x_tes…
Tensorflow2.0-mnist手写数字识别示例   读书不觉春已深,一寸光阴一寸金. 简介:通过CNN 卷积神经网络训练后识别出手写图片,测试图片mnist数据集中的0.1.2.4.                   一.mnist数据集准备 虽然可以通过代码自动下载数据集,但是mnist 数据集国内下载不稳定,会出现[Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mn…
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p…
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for Experts - https://www.tensorflow.org/get_started/mnist/pros 版本: TensorFlow 1.2.0 + Flask 0.12 + Gunicorn 19.6 相关文章: TensorFlow 之 入门体验 TensorFlow 之 手写…
在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但是这样的实践对机器学习的理解是大有裨益的.在大多数情况下,我们还是希望能多简单就多简单地去搭建网络模型,这同时也算对得起TensorFlow这个强大的工具了.本节,还是以手写数据集MNIST为例,利用TensorFlow2.0的keras高层API重现之前的网络. 一.数据的导入与预处理 关于这个过程,与上节…
@ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模型(mnist) 2.使用Keras搭建cnn训练mnist(train.py),训练部分源码如下: 3.训练结果保存成冻结模型(pb文件)(train.py),训练结果保存为冻结模型的源码如下: 4.python opencv调用冻结模型(cvcallpb.py) 三.LabVIEW OpenCV…
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神…
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性,以下面这个一维的卷积为例子: 第一个特性是稀疏连接.可以看到, layer m 上的每一个节点都只与 layer m-1 对应区域的三个节点相连接.这个局部范围也叫感受野.第二个特性是相同颜色的线条代表了相同的权重,即权重共享.这样做有什么好处呢?一方面权重共享可以极大减小参数的数目,学习起来更加有…
上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下.不过呢,这块内容太复杂了,所以就简单的介绍一下paddlepaddle的第一个"hello word"程序----mnist手写数字识别.下一次再介绍用PaddlePaddle做分布式训练的方案.其实之前也写过一篇用CNN识别手写数字集的文章,是用keras实现的,这次用了paddlepaddle后,正好可以简单对比一下两个框架的优劣.  …
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…