最小哈希 minhash】的更多相关文章

最小哈希 维基百科,自由的百科全书     跳到导航跳到搜索 在计算机科学领域,最小哈希(或最小哈希式独立排列局部性敏感哈希)方法是一种快速判断两个集合是否相似的技术.这种方法是由Andrei Broder (1997),[1]发明的,最初在AltaVista搜索引擎中用于在搜索结果中检测并消除重复Web页面.[2] 它同样也应用于大规模聚类问题,比如通过文档间包含的词语相似性进行聚类.[1] 目录 1雅可比相似度与最小哈希值 2算法 2.1多哈希函数的变种 2.2单一哈希函数的变种 2.3耗时…
minHash最小哈希原理 收藏 初雪之音 发表于 9个月前 阅读 208 收藏 9 点赞 1 评论 0 摘要: 在数据挖掘中,一个最基本的问题就是比较两个集合的相似度.通常通过遍历这两个集合中的所有元素,统计这两个集合中相同元素的个数,来表示集合的相似度:这一步也可以看成特征向量间相似度的计算(欧氏距离,余弦相似度).当这两个集合里的元素数量异常大(特征空间维数很大),同时又有很多个集合需要判断两两间的相似度时,传统方法会变得十分耗时,最小哈希(minHash)可以用来解决该问题. 前言 在数…
http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之 Locality-Sensitive Hashing(LSH) 局部敏感哈希 {This is the first half of discussion of a powerful technique for focusing search on things…
MinHash是用于快速检测两个集合的相似性的方法.改方法由Andrei Broder(1997)发明,并最初用于搜索引擎AltaVista中来检测重复的网页的算法.它同样可以用于推荐系统和大规模文档聚类中. 我们先介绍Jaccard相似度量.对于两个集合A与B,Jaccard相似性系数可以定义为: 容易知道,Jaccard系数是0-1之间的值.当两个集合越接近,那么该值越接近1:反之跟接近0. 假设h是一个hash function,将A与B的元素映射成一个整数,定义:是集合S中具有最小哈希值…
1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页.它也可以应用于大规模聚类问题.   2.Jaccard index       在介绍MinHash之前,我们先介绍下Jaccard index.   Jaccard index是用来计算相似性,也就是距离的一种度量标准.假如有集合A.B,那么,     也就是说,集合A,B的Jaccard系数等于A,B中共同…
1MinHash简介 传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法.传统hash算法产生的两个签名,如果相等,说明原始内容在一定概率下是相等的:如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大.从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的原始内容的差异程度的信息. M…
MinHash 首先它是一种基于 Jaccard Index 相似度的算法,也是一种 LSH 的降维的方法,应用于大数据集的相似度检索.推荐系统.下边按我的理解介绍下MinHash 问题背景 给出N个集合,找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合.当N比较小时,比如K级,Jaccard算法可以在接受的时间范围内完成,比B级,甚至P级,那么需要的时间是不能够被接受的,举例:对于Indeeed美国的网站用户来说(五千万的访问量),在Mahout中的用户间相似度是通过在O(n2)复杂…
http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 相似项的发现:局部敏感哈希(LSH, Locality-Sensitive Hashing) {博客内容:More about Locality-Sensitive Hashing:在海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensit…
最小哈希原理介绍 MinHash是基于Jaccard Index相似度(海量数据不可行)的算法,一种降维的方法A,B 两个集合:A = {s1, s3, s6, s8, s9}  B = {s3, s4, s7, s8, s10} MinHash的基本原理:在A∪B这个大的随机域里,选中的元素落在A∩B这个区域的概率,这个概率就等于Jaccard的相似度 最小哈希:   S1 S2 S3 A 1 0 0 B 0 1 0 C 0 0 0 D 1 0 1 行的随机排列转换(也称置换运算)   S1…
SimHash 事实上,传统比较两个文本相似性的方法,大多是将文本分词之后,转化为特征向量距离的度量,比如常见的欧氏距离.海明距离或者余弦角度等等.两两比较固然能很好地适应,但这种方法的一个最大的缺点就是,无法将其扩展到海量数据.例如,试想像Google那种收录了数以几十亿互联网信息的大型搜索引擎,每天都会通过爬虫的方式为自己的索引库新增的数百万网页,如果待收录每一条数据都去和网页库里面的每条记录算一下余弦角度,其计算量是相当恐怖的. 我们考虑采用为每一个web文档通过hash的方式生成一个指纹…