数据分析之sklearn】的更多相关文章

一,介绍 Python 中的机器学习库 简单高效的数据挖掘和数据分析工具 可供大家使用,可在各种环境中重复使用 建立在 NumPy,SciPy 和 matplotlib 上 开放源码,可商业使用 - BSD license 二,线性回归算法模型 2个概念 样本集:用于对机器学习算法模型对象进行训练.样本集通常为一个DataFrame. - 特征数据:特征数据的变化会影响目标数据的变化.必须为多列. - 目标数据:结果.通常为一列 1,建立线性回归算法模型对象 from sklearn.linea…
参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 一般而言,这几个包是比较常见的: • matplotlib,用于绘图 • numpy,数组处理库 • pandas,强大的数据分析库 • sklearn,用于线性回归的库 • scipy, 提供很多有用的科学函数 我一般是用pip安装,若不熟悉这些库,可以搜索一下它们的简单教程. 二. 线性回归 为了尽量简单,所以用以下一元方程式为例子: 典型的例子是房价预测,假设我们有以下数据集: 我们需要通过训…
主要是使用随机森林将four列缺失的数据补齐. # fit到RandomForestRegressor之中,n_estimators代表随机森林中的决策树数量 #n_jobs这个参数告诉引擎有多少处理器是它可以使用. “-1”意味着没有限制,而“1”值意味着它只能使用一个处理器.import pandas as pd #数据分析,引入pandas包,用以数据分析 import pandas as pd #数据分析,引入pandas包,用以数据分析 from sklearn.ensemble im…
'''数组与pandas模块''' # numpy模块:用来做数据分析,对numpy数组(既有行又有列)--矩阵进行科学运算 # tensorflow/pytorch(数学专业/物理专业/计科专业硕士及以上,kaggle 10-15%(清华/北大/浙大)/acm 1-2等奖/ 天池5%)模块:用来做数据分析,对tensor数组(既有行又有列还有层...-三维以上)-- 张量进行科学运算 lt1 = [1, 2, 3] # n个元素 lt2 = [4, 5, 6] lt = [] for i in…
摘要:本文通过Keras实现了一个RNN文本分类学习的案例,并详细介绍了循环神经网络原理知识及与机器学习对比. 本文分享自华为云社区<基于Keras+RNN的文本分类vs基于传统机器学习的文本分类>,作者: eastmount . 一.RNN文本分类 1.RNN 循环神经网络英文是Recurrent Neural Networks,简称RNN.RNN的本质概念是利用时序信息,在传统神经网络中,假设所有的输入(以及输出)都各自独立.但是,对于很多任务而言,这非常局限.举个例子,假如你想根据一句没…
准备 相关的库 相关的库包括: numpy pandas sklearn 带入代码如下: import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsClassfier as KNN 数据准备 数据是sklearn的乳腺癌数据. from skleanr.datasets import load_breast_cancer data=load_breast_caner() data主要分为两部分:d…
前提条件:numpy.scipy以及matplotlib库的安装 (注:所有操作都在pycharm命令终端进行) ①numpy安装 pip install numpy ②scipy安装 pip install scipy ③matplotlib安装 pip install matplotlib sklearn模块安装 pip install -U scikit-learn…
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回顾7 总结8 参考资料 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以方便地进行特征工程和模型训练工作,在<使用sklearn做单机特征工程>中,我们最后留下了一些疑问:特征处理类都有三…
Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题,但是由于数据样本相对较少,在当时慌乱的情况下幸存者有一定的随机性,还是有一定挑战的.https://www.kaggle.com/c/titanic-gettingStarted/ 一 载入数据 首先,我们要先看一看数据,分析数据的一些较为直观的特征.代码使用numpy pandas和scikit…
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回顾7 总结8 参考资料 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以方便地进行特征工程和模型训练工作,在<使用sklearn做单机特征工程>中,我们最后留下了一些疑问:特征处理类都有三…