concat_ws: 用指定的字符连接字符串 例如: 连接字符串: concat_ws("_", field1, field2),输出结果将会是:“field1_field2”. 数组元素连接: concat_ws("_", [a,b,c]),输出结果将会是:"a_b_c". collect_set: 把聚合的数据组合成一个数组,一般搭配group by 使用. 例如有下表T_course; id name course 1 zhang san…
/** Spark SQL源码分析系列文章*/ 前面几篇文章讲解了Spark SQL的核心执行流程和Spark SQL的Catalyst框架的Sql Parser是怎样接受用户输入sql,经过解析生成Unresolved Logical Plan的.我们记得Spark SQL的执行流程中另一个核心的组件式Analyzer,本文将会介绍Analyzer在Spark SQL里起到了什么作用. Analyzer位于Catalyst的analysis package下,主要职责是将Sql Parser…
/** Spark SQL源代码分析系列文章*/ 前面几篇文章解说了Spark SQL的核心运行流程和Spark SQL的Catalyst框架的Sql Parser是如何接受用户输入sql,经过解析生成Unresolved Logical Plan的. 我们记得Spark SQL的运行流程中还有一个核心的组件式Analyzer,本文将会介绍Analyzer在Spark SQL里起到了什么作用. Analyzer位于Catalyst的analysis package下.主要职责是将Sql Pars…
/** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效率. 这就涉及到内存中的数据的存储形式,我们知道基于关系型的数据可以存储为基于行存储结构 或 者基于列存储结构,或者基于行和列的混合存储,即Row Based Storage.Column Based Storage. PAX Storage. Spark SQL 的内存数据是如何组织的? Spar…
Catalyst Catalyst是与Spark解耦的一个独立库,是一个impl-free的运行计划的生成和优化框架. 眼下与Spark Core还是耦合的.对此user邮件组里有人对此提出疑问,见mail. 以下是Catalyst较早时候的架构图,展示的是代码结构和处理流程. Catalyst定位 其它系统假设想基于Spark做一些类sql.标准sql甚至其它查询语言的查询,须要基于Catalyst提供的解析器.运行计划树结构.逻辑运行计划的处理规则体系等类体系来实现运行计划的解析.生成.优化…
原博文出自于: http://blog.csdn.net/oopsoom/article/details/39401391 感谢! Spark1.1推出了Uer Define Function功能,用户可以在Spark SQL 里自定义实际需要的UDF来处理数据. 因为目前Spark SQL本身支持的函数有限,一些常用的函数都没有,比如len, concat...etc 但是使用UDF来自己实现根据业务需要的功能是非常方便的. Spark SQL UDF其实是一个Scala函数,被catalys…
背景 本文主要介绍了Spark SQL里眼下的CLI实现,代码之后肯定会有不少变动,所以我关注的是比較核心的逻辑.主要是对照了Hive CLI的实现方式,比較Spark SQL在哪块地方做了改动,哪些地方与Hive CLI是保持一致的.可以先看下总结一节里的内容. Spark SQL的hive-thriftserver项目里是其CLI实现代码.以下先说明Hive CLI的主要实现类和关系,再说明Spark SQL CLI的做法. Hive CLI 核心启动类是org.apache.hive.se…
.agg(expers:column*) 返回dataframe类型 ,同数学计算求值 df.agg(max("age"), avg("salary")) df.groupBy().agg(max("age"), avg("salary")) . agg(exprs: Map[String, String])  返回dataframe类型 ,同数学计算求值 map类型的 df.agg(Map("age" -…
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####…
http://blog.csdn.net/oopsoom/article/details/42061077 一.Spark SQL External DataSource简介 随着Spark1.2的发布,Spark SQL开始正式支持外部数据源.Spark SQL开放了一系列接入外部数据源的接口,来让开发者可以实现. 这使得Spark SQL支持了更多的类型数据源,如json, parquet, avro, csv格式.只要我们愿意,我们可以开发出任意的外部数据源来连接到Spark SQL.之前…