LSTM图和词向量输入分析…
今天终于弄明白,TensorFlow和Keras中LSTM神经网络的输入输出层到底应该怎么设置和连接了.写个备忘. https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/ Stacked LSTM Multiple hidden LSTM layers can be stacked one on top of another in what is referred to…
干货 | 图解LSTM神经网络架构及其11种变体(附论文) 2016-10-02 机器之心 选自FastML 作者:Zygmunt Z. 机器之心编译  参与:老红.李亚洲 就像雨季后非洲大草原许多野生溪流分化成的湖泊和水洼,深度学习已经分化成了各种不同的专门架构. 并且,每个架构都会有一个图解,这里将详细介绍它们. 神经网络在概念上很简单,并且它们十分动人.在层级上,有着一堆同质化的元素和统一的单位,并且它们之间还存在在一系列的加权连接.这就是神经网络的所有,至少从理论上来说是这样.然而,时间…
LSTM是什么 LSTM即Long Short Memory Network,长短时记忆网络.它其实是属于RNN的一种变种,可以说它是为了克服RNN无法很好处理远距离依赖而提出的. 我们说RNN不能处理距离较远的序列是因为训练时很有可能会出现梯度消失,即通过下面的公式训练时很可能会发生指数缩小,让RNN失去了对较远时刻的感知能力. ∂E∂W=∑t∂Et∂W=∑tk=0∂Et∂nett∂nett∂st(∏tj=k+1∂st∂sk)∂sk∂W 解决思路 RNN梯度消失不应该是由我们学习怎么去避免,而…
原文链接:http://www.atyun.com/16821.html 扩展阅读: https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/  is a really good tutorial of time series forecasting using LSTM. 长短期记忆网络,通常称为“LSTM”(Long Short Term Mem…
#RNN 循环神经网络 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data tf.set_random_seed(1) # set random seed # 导入数据 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # hyperparameters lr = 0.001 # learning rate t…
转自:https://www.csdn.net/article/2015-06-05/2824880 LSTM递归神经网络RNN长短期记忆   摘要:根据深度学习三大牛的介绍,LSTM网络已被证明比传统的RNNs更加有效.本文由UCSD研究机器学习理论和应用的博士生Zachary Chase Lipton撰写,用浅显的语言解释了卷积网络的基本知识,并介绍长短期记忆(LSTM)模型. [编者按]使用前馈卷积神经网络(convnets)来解决计算机视觉问题,是深度学习最广为人知的成果,但少数公众的注…
最近看了不少关于写诗的博客,在前人的基础上做了一些小的改动,因比较喜欢一次输入很长的开头句,所以让机器人输出压缩为一个开头字生成两个诗句,写五言和七言诗,当然如果你想写更长的诗句是可以继续改动的. 在输入做了些改动,去除误输入的标点符号,例如输入下面词句: 怒发冲冠,凭栏处,潇潇雨歇.抬望眼,仰天长啸,壮怀激烈. 机器人写出如下: 怒漠多无度袍小,巡管山明恰见偷. 发杵共鸿莼散暮,家山曾住上阳台. 冲钩麻衣隐步障,楼舟复别赤轮楼. 冠盘一线倾中令,音信长思两足阴. 凭栏十字送月沈,莫待长筵韦与兵…
  0设计概述 RNN梯度爆炸和消失比较严重,RNN隐层只有一个状态h记录短期记忆,增加一个长期记忆状态c似乎就可以解决问题.…
目录 1. ABSTRACT 2. INTRODUCTION 3. RELATED WORKS 4. SUB-PIXEL MOTION COMPENSATION (SPMC) 5. OUR METHOD 5.1. Motion Estimation and SPMC 5.2. Detail Fusion Net 6. TRAINING STRATEGY 6.1. FlowNet 6.2. DF Network 7. 实验 论文:Detail-revealing Deep Video Super-…