【题解】Luogu P5288 [HNOI2019]多边形】的更多相关文章

原题传送门 HN的题目就是毒瘤 我们有以下猜想: 1.最后所有的线都连到了n号点上 2.最小步数应该为n-3-已经连到n号点的线段数量 本来有些边\((a_i,n)\)会将整个图分割成很多个区间.对于一个区间\([l,r]\),\(l,r\)之间必定存在一条边,并且一定存在点\(mid\)有\((mid,l),mid(mid,r)\)的边,所以我们珂以用一次旋转使得\((l,r)\)变成\((mid,n)\),这样这个区间有珂以分成两个子区间,珂以建出二叉树.一直如此,直到\(r=l+1\)为止…
传送门 这是什么神仙操作... 首先要注意一些性质.首先每一个\((x,n)\)的边可以把当前多边形分成两半,这两半的操作是独立的.然后对于某一个没有\((x,n)\)的边的多边形,最优操作是唯一的.拿样例举例,必须先选\((1,5)\),然后多边形被分成两半,这两半分别只能选\((1,3)\),\((3,5)\). 可以发现,这里每次操作的多边形上的点分别是\(l,l+1...,r(l\ge 1,r<n,r-l>1)\)和\(n\),然后最优方案要选\((l,r)\)这条边,把多边形分成\(…
HNOI2019 多边形 polygon https://www.luogu.org/problemnew/show/P5288 这题镪啊... 首先堆结论: 显然终止状态一定是所有边都连向n了 根据样例及打表猜个结论,每一步一定可以新连一条到n的边,这个结论也很好证 然后可以把多边形分成若干区间,这些区间形成一棵树.具体划分方法很简单,就是用一些现有的点和中间所有边构成的多边形缩成一个区间,这些点要满足:编号连续,和只有编号最小最大的点与n有连边.比如样例中[1,3],[3,5],[1,5].…
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边(看样例图解就知道了) 那么大力猜想一下第一问的答案一定是\(n-3-\)和\(n\)号点直接相连的边数. 手玩一下,发现这样一件事情:和\(n\)直接相连的所有边把多边形分割成了若干个区间,每个区间都用\([l,r]\)表示. 对于\([l,r]\)这个区间,因为已经分割出来了,也就是除了\(l-n…
[题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,...,S_{n-1},S_n,S_{n-1},...S_2,S_1 \}\). 现在给定一个长度为\(n\)的字符串\(S^{'}\)表示原字符串\(S\)经过若干次(可能为0)旋转之后的一个前缀, 求原来字符串可能的长度\(l\). 显然当\(l > n\)时一定可行,所以只需要输出所有的\(l\leq…
原题传送门 题意:给你一个长度为\(n\)的序列\(A\),每次询问修改一个元素(只对当前询问有效),然后让你找到一个不下降序列\(B\),使得这两个序列相应位置之差的平方和最小,并输出这个最小平方和 观察样例说明,发现一个很有趣的性质,\(B\)中数字相同的一段的数字正好是\(A\)中这段数字的平均数 那我们就珂以猜想:最优解的形式一定为分成若干段,每一段的\(B_i\)即取其中\(A_i\)的平均数,同时保证\(B\)的有序性(这篇论文好像有证明) 如何求出最优的\(B\)?我们珂以使用单调…
关于这道题, 我们可以发现移动顺序不会改变答案, 具体来说, 我们有以下引理成立: 对于一个移动过程中的任意一个移动, 若其到达的位置上有一个棋子, 则该方案要么不能将所有棋子移动到最终位置, 要么可以通过改变顺序使这一次移动合法 证明: 考虑到达位置上的那个棋子, 如果它没有到达最终位置, 则我们考虑将该棋子移至下一步, 如果下一步还有没有到达最终位置的棋子, 则也移动它 否则直接调换这两个棋子的移动顺序即可 好的我们去除了题目中的要求: 「移动过程中不能出现多颗棋子同时在某一格的情况」, 接…
传送门 这个什么鬼证明直接看uoj的题解吧根本不会证明 首先方案一定是若干段等值的\(B\),然后对于一段,\(B\)的值应该是\(A\)的平均值.这个最优方案是可以线性构造的,也就是维护以区间平均值为权值的单调栈,每次在后面插入一个元素,不断弹栈并与最后一个合并,直到平均值单调递增 然后这个单调栈是可以两个区间的单调栈直接合并的,因为合并完后新单调栈的断点集合是原来两段的断点集合的子集.合并直接暴力就好了合并的话一定是前面那个的一段后缀的后面的一段前缀合并,然后后面的前缀位置(就是合并区间的右…
本蒟蒻也来发一次题解第一篇请见谅 这个题有几个要点 1.无向无权图,建图的时候别忘记建来回的有向边[因此WA掉1次 2.无权嘛,那么边长建成1就好了2333333 3.最短路采用迪杰斯特拉(别忘用堆优化)来做,计数操作改装进去,ans[1]=1;迪杰斯特拉更新边长的时候如果大于号(具体见代码)就覆盖,相等的话就加上 4.%楼上SPFA,BFS大佬 具体见代码,其实就是在迪杰斯特拉里面填了几笔(逃 代码巨丑(捂脸) #include<cstdio> #include<cstring>…
点此看题面 大致题意: 给你一个多边形,用若干不重合.不相交的线段将其划分为若干三角形区域,并定义旋转操作\((a,c)\)为选定\(4\)个点\(a,b,c,d\)满足\(a<b<c<d\)且\(ab,ac,ad,bc,cd\)有连边,然后删去边\(ac\)并加上边\(bd\).带修独立询问至少旋转几次使得无法继续旋转. 关于无法继续旋转 第一次看完题面,我是一脸懵逼:选中四个点不可以无限重复旋转吗?为什么会无法旋转? 然后冷静了一下重新看了遍题面,才发现\(a,b,c,d\)是有序的…