51Nod 1240:莫比乌斯函数】的更多相关文章

题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int miu(int n){ int i, cnt; ;//质因子个数…
1240 莫比乌斯函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数).   具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0.例如:miu(4), miu(12), miu(18) = 0. 如果一个数不包含平方因子,并且有k个不同的质因子…
题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积性函数前缀和的方法,学习参考博客:http://blog.csdn.net/skywalkert/article/details/50500009  要好好看大神的博客哦orz 用筛法预处理前N^(2/3)项,后面的记忆化搜索解决. 不太会用哈希,就用map记忆化一下: #include<cstdi…
1240 莫比乌斯函数  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数). 具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0.例如:miu(4), miu(12), miu(18) = 0. 如果一个数不包含平方因子,并且有k个不同的质因子,…
51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0.例如:miu(4), miu(12), miu(18) = 0. 如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k.例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10)…
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n==1]d∣n∑​μ(d)=[n==1] 移项 μ(d)=[n==1]−∑d∣n,d<nμ(d)∴S(N)=∑i=1Nμ(i)=∑i=1N([i==1]−∑d∣i,d<iμ(d))=1−∑i=1N∑d∣i,d<iμ(d)\mu(d)=[n==1]-\sum_{d|n,d<n}\mu(d)\…
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利用杜教筛: 求F(n)=∑(f(i)) 存在g=f*I,定义G(n)=∑(g(i)) 就可以得到F(n)=G(n)-∑(F(n/i)) 加一些预处理我们可以做到O(n^(2/3))求解F(n) 我们知道积性函数∑(miu(d))=0(d|n),又有∑(miu(d))=1(n=1), 所以∑∑(miu…
题目链接 map: //杜教筛 #include<map> #include<cstdio> typedef long long LL; const int N=5e6; int mu[N+3],P[N+3],cnt; bool Not_P[N+3]; std::map<LL,LL> sum; //std::map<LL,LL>::iterator it; void Init() { mu[1]=1; for(int i=2;i<N;++i) { if…
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\mu(i) \),然后很显然对于mu\( g(n)=1\),对于\( g(n)=n*(n+1)/2 \),然后可以这样转化一下: \[ g(n)=\sum_{i=1}^{n}\sum_{d|n}\mu(d) \] \[ =\sum_{d=1}^{n}\mu(d)\left \lfloor \frac{n}{d}…
1240 莫比乌斯函数  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数). 具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0.例如:miu(4), miu(12), miu(18) = 0. 如果一个数不包含平方因子,并且有k个不同的质因子,…