标题:斐波那契 斐波那契数列大家都非常熟悉.它的定义是: f(x) = 1 .... (x=1,2) f(x) = f(x-1) + f(x-2) .... (x>2) 对于给定的整数 n 和 m,我们希望求出: f(1) + f(2) + ... + f(n) 的值.但这个值可能非常大,所以我们把它对 f(m) 取模. 公式参见[图1.png] 但这个数字依然很大,所以需要再对 mod 求模. [数据格式] 输入为一行用空格分开的整数 n m mod (0 < n, m, mod <…
P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位: 思路: 1/gcd(F[n],F[m])=F[gcd(n,m)].所以先求出gcd(n,m),然后构造斐波那契数列的矩阵快速幂. #include <algorithm> #include <iterator> #include <iostream> #include…
题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ j ]+=v[i][k]*u[k][j] ___k==1->j: 模板: #include<stdio.h> #include<map> using namespace std; //矩阵快速幂 struct node { int m[10][10]; }a,b; node ju…
一开始数据没加强,一个简单的程序可以拿过 gcd(f[n],f[m])=f[gcd(n,m)] 下面这个是加强数据之后的80分代码 #include<bits/stdc++.h> using namespace std; typedef long long ll; ll gcd(ll a,ll b){ return b?gcd(b,a%b):a; } int main() { ll n,m,a=,b=,c=;cin>>n>>m; ;i<gcd(n,m);i++)…
[题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [分析] 这是我们熟悉的斐波那契数列,原来呢我们是递推求值的嘛,当然这是最水的想法~~可是!这里的n很大诶,有10^9,for一遍肯定是不可以的咯. 于是,我学会了用矩阵乘法求斐波那契数列(貌似是很经典的). 作为初学者的我觉得十分神奇!! 好,我们来看: 我们每次存两个数f[i-1]和f[i-2],…
5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version of the contest problems. The problem is problem B in the PDF. But the data limits is slightly modified: 1≤P≤1000000 in the original description, but i…
题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5+2√6)n+(5-2√6)n是一个整数(2√6的偶数次幂总会正负抵消掉),并且(5-2√6)n是小于1的.所以我们就只需要求出Sn-1即可.令 An=(5+2√6)n;  Bn=(5-2√6)n. Sn=An+Bn     Sn为整数. Sn*((5+2√6)+(5-2√6))=Sn*10 Sn*…
****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? class Solution { public: int rectCover(int number) { ) ; ||number==) return number; )+rectCover(number-); } };…
思路: 把斐波那契通项公式转化成log的形式,高中数学... //By SiriusRen #include <bits/stdc++.h> using namespace std; ],n; int main(){ f[]=f[]=; ;i<=;i++)f[i]=f[i-]+f[i-]; while(~scanf("%d",&n)){ )printf("%d\n",f[n]); else{ /sqrt())+n*log10((+sqrt(…
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接近于黄金分割率 (2) 那么前一项比后一项则为1/黄金分割率(备注:其实有这么一个规律0.618/1=1/1.618=1.618/2.618=0.618) (3) 那么(2)(3)带入(1)可得 可以求得黄金分割率的根为 对于广义的斐波那契数列: 一般项可以表示为: 因此: 当  这个函数趋向于 开…