题目大意 给出$n$, $p$, 求有多少长度为$n$的排列可以被分成三个上升子序列, 数量对$p$取模, 数据范围 $3 \leq n \leq 500$. 思路 首先让我们考虑如果有一个排列,如何判断这个排列合法,我可以考虑贪心,维护三个上升序列的末尾(最大值),从左到右依次将数插入序列,把这个数贪心的加到它可以加入的末尾的数最大的序列里. 因此考虑dp,定义$f[i][j][k]$表示现在有$i$个数,形成了三个上升子序列,其中最大的子序列末尾显然是第$i$大的数,第二大的子序列末尾是第$…