今天介绍目标检测中非常著名的一个框架 SSD,与之前的 R-CNN 系列的不同,而且速度比 YOLO 更快. SSD 的核心思想是将不同尺度的 feature map 分成很多固定大小的 box,然后对每个 box 做预测,既要预测该 box 所包含的 object 属于哪一类,也要预测该 box 与真实的 box 之间的偏差. 为了获得更高的检测精度,SSD 利用了多尺度的技巧,既利用了不同尺度的 feature map,也利用了不同尺度的 box,还利用了不同的比率. 论文也给出了说明图,对…