lr_policy可以设置为下面这些值,相应的学习率的计算为: - fixed:  保持base_lr不变. - step:  如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数 - exp:   返回base_lr * gamma ^ iter, iter为当前迭代次数 - inv:     如果设置为inv,还需要设置一个power, 返回base_lr * (1…
1:神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/c…
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是ResNet取消了全连接层,也会在最后有一个1000个节点的输出层: 一般情况下,最后一个输出层的节点个数与分类任务的目标数相等.假设最后的节点数为N,那么对于每一个样例,神经网络可以得到一个N维的数组作为输出结果,数组中每一个维度会对应一个类别.在最理想的情况下,如果一个样本属于k,那么这个类别所对…
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最…
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比如对于复杂的问题我们可以在隐藏层上使用足够多的神经元就行了, 很长一段时间人们满足了就没有去探索深度神经网络, 但是深度神经网络有更高的参数效率,神经元个数可以指数倍减少,并且训练起来也更快!(因为每个隐藏层上面神经元个数减少了可以完成相同的功能,则连接的参数就少了) 就好像直接画一个森林会很慢,但…
假设一个三层的神经网络结构图如下: 对于一个单独的训练样本x其二次代价函数可以写成: C = 1/2|| y - aL||2 = 1/2∑j(yj - ajL)2 ajL=σ(zjL) zjl = ∑kωjklakl-1 + bjl 代价函数C是ajL的函数,ajL又是zjL的函数,zjL又是ωjkL的函数,同时又是akL-1的函数...... 证明四个基本方程(BP1-BP4),所有这些都是多元微积分的链式法则的推论 δjL = (∂C/∂ajL)σ'(zjL)                …
原文地址:https://blog.csdn.net/Uwr44UOuQcNsUQb60zk2/article/details/81074408 前言        很多人不明白为什么要在神经网络.逻辑回归中要在样本X的最前面加一个1,使得 X=[x1,x2,…,xn] 变成 X=[1,x1,x2,…,xn] .因此可能会犯各种错误,比如漏了这个1,或者错误的将这个1加到W·X的结果上,导致模型出各种bug甚至无法收敛.究其原因,还是没有理解这个偏置项的作用啦.        在文章<逻辑回归>…
1.什么是超参数 所谓超参数,就是机器学习模型里面的框架参数.比如聚类方法里面类的个数,或者话题模型里面话题的个数等等,都称为超参数.它们跟训练过程中学习的参数(权重)是不一样的,通常是手工设定的,经过不断试错来调整,或者对一系列穷举出来的参数组合一通枚举(叫做网格搜索).深度学习和神经网络模型,有很多这样的参数需要学习. 2.一些启发式规则 在实际应用中,当你使用神经网络去解决问题时,很难找到好的超参数.假设我们现在正在处理MINIST数据库的问题,并且对超参数是如何使用的一无所知.假设我们大…
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预测结果a,看看这个预测结果和事先标记好的训练集中的真实结果y之间的差距,然后调整策略,再试一次,这一次就不是“蒙”了,而是有依据地向正确的方向靠近.如此反复多次,一直到预测结果和真实结果之间相差无几,亦即|a-y|->0,就结束训练. 在神经网络训练中,我们把“蒙”叫做初始化,可以随机,也可以根据以…
在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用.因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)来代 表这个区域的特征. 1.  一般池化(General Pooling) 池化作用于图像中…