TensorRT学习总结】的更多相关文章

TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而实际工作很大一块的工作内容集中于如何将模型部署到具体的芯片上.你自己写的模型效果是很难优于成熟的知名的模型的. 以无人驾驶为例,拍摄到图片后,芯片上的加载的模型要能够识别出图片里是什么.对自动驾驶这种场景而言,对实时性地要求是非常高的.试想,从图片输入到模型,到模型识别出图片中前方有个人花了1分钟,…
TensorRT 7.2.1 开发概要(上) Abstract 这个TysRR7.2.1开发者指南演示了如何使用C++和Python API来实现最常用的深层学习层.它展示了如何使用深度学习框架构建现有模型,并使用该模型使用提供的解析器构建一个TensorRT引擎.开发指南还提供了常见用户任务的分步指令,例如创建TensorRT网络定义.调用TensorRT builder.序列化和反序列化,以及如何用数据给引擎提供数据并执行推理:同时使用C++或Python API. 有关先前发布的Tenso…
TensorRT深度学习训练和部署 NVIDIA TensorRT是用于生产环境的高性能深度学习推理库.功率效率和响应速度是部署的深度学习应用程序的两个关键指标,因为它们直接影响用户体验和所提供服务的成本.Tensor RT自动优化训练好的神经网络,以提高运行时性能,与仅使用通用CPU的深度学习推理系统相比,Tesla P100 GPU的能源效率(每瓦性能)提高多达16倍(见图1).图2显示了使用TensorRT和相对复杂的GoogLenet神经网络架构运行NVIDIA Tesla P100和K…
NVIDIA TensorRT高性能深度学习推理 NVIDIA TensorRT 是用于高性能深度学习推理的 SDK.此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高吞吐量. 在推理过程中,基于 TensorRT 的应用程序的执行速度可比 CPU 平台的速度快 40 倍.借助 TensorRT,您可以优化在所有主要框架中训练的神经网络模型,精确校正低精度,并最终将模型部署到超大规模数据中心.嵌入式或汽车产品平台中. TensorRT 以 NVIDIA 的并行编程…
下表列出了TensorRT层和每个层支持的精确模式.它还列出了该层在深度学习加速器(DLA)上运行的能力.有关附加约束的更多信息,请参见 DLA Supported Layershttps://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers .有关每个TensorRT层的更多信息,请参见TensorRT层.要查看每个层支持的特定属性列表,请参考TensorRT API文档https:/…
导读 如今的微软已经一跃成为全球市值最高的高科技公司之一.2018年11月底,微软公司市值曾两次超越了苹果,成为全球市值最高的公司,之后也一直处于与苹果胶着的状态.市场惊叹微软是一家有能力改造自己并取得成功的公司!自微软CEO萨堤亚·纳德拉于2014年2月上任以来,微软就处于稳定复苏的状态中,而纳德拉上任之后最震惊业界的举动之一就是对外宣布微软爱Linux.如今,继Linux之后,微软更爱下一个“操作系统”:ONNX. ONNX(Open Neural Network Exchange)是201…
前言 NVIDIA TensorRT是一种高性能神经网络推理(Inference)引擎,用于在生产环境中部署深度学习应用程序,应用有 图像分类.分割和目标检测等,可提供最大的推理吞吐量和效率.TensorRT是第一款可编程推理加速器,能加速现 有和未来的网络架构.TensorRT需要CUDA的支持.TensorRT包含一个为优化生产环境中部署的深度学习模型而 创建的库,可获取经过训练的神经网络(通常使用32位或16位数据),并针对降低精度的INT8运算来优化这些网络. 借助CUDA的可编程性,T…
下面是TensorRT的介绍,也可以参考官方文档,更权威一些:https://developer.nvidia.com/tensorrt 关于TensorRT首先要清楚以下几点: 1. TensorRT是NVIDIA开发的深度学习推理工具,只支持推理,不支持训练:目前TensorRT3已经支持Caffe.Caffe2.TensorFlow.MxNet.Pytorch等主流深度学习库: 2. TensorRT底层针对NVIDIA显卡做了多方面的优化,不仅仅是量化,可以和 CUDA CODEC SD…
背景 一般在TX2上部署深度学习模型时,都是读取摄像头视频或传入视频文件进行推理,从视频中抽取帧进行目标检测等任务.对于大点的模型,推理的速度是赶不上摄像头或视频的帧率的,如果我们使用单线程进行处理,即读取一帧检测一帧,推理会堵塞视频的正常传输,表现出来就是摄像头视频有很大的延迟,如果是对实时性要求较高,这种延迟是难以接受的.因此,采用多线程的方法,将视频读取与深度学习推理放在两个线程里,互不影响,达到实时的效果. 实现方法 将摄像头的视频读取放入子线程,充当一个生产者的角色,将推理放入主线程,…
NVIDIA TensorRT 让您的人工智能更快! 英伟达TensorRT™是一种高性能深度学习推理优化器和运行时提供低延迟和高通量的深度学习推理的应用程序.使用TensorRT,您可以优化神经网络模型,精确地校准低精度,并最终将模型部署到超大规模的数据中心.嵌入式或汽车产品平台.在对所有主要框架进行培训的模型的推理过程中,基于TensorRT的gpu应用程序的执行速度比CPU快100倍. TensorRT提供INT8和FP16的优化,用于深度学习推理应用程序的生产部署,如视频流.语音识别.推…