文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义: 从一个大规模数据集合中检索文档的时,可把文档分成四组 - 系统检索到的相关文档(A) - 系统检索到的不相关文档(B) - 相关但是系统没有检索到的文档(C) - 相关但是被系统检索到的文档(D) 相关 不相关 检索到 A B 未检索到 C D 直观的说,一个好的检索系统检索到的相关文档越多越好,不相关…
最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到,知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来. 召回率和准确率是数据挖掘中预测.互联网中的搜索引擎等经常涉及的两个概念和指标. 召回率:Recall,又称“查全率”——还是查全率好记,也更能体现其实质意义. 准确率:Precision,又称“精度”.“正确率”. 以检索为例,可以把搜索情况用下图表示: 相关 不相关 检索到 A B 未检索到 C D A:检索到的,相关的(搜到的也想要的) B:检索到的,…