pytorch-MNIST数据模型测试】的更多相关文章

本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 测试代码已上传至GitHub:yhlleo/mnist 将MNIST数据集,下载后拷贝到文件夹Mnist_data中,如果已经配置好tensorflow环境,主要的四个测试代码文件,都可以直接编译运行: mnist_softmax.py: MNIST机器学习入门 mnist_deep.py: 深入MNIST fully_c…
用pytorch搭建一个DNN网络,主要目的是熟悉pytorch的使用 """ test Function """ import torch from torch import nn, optim from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import datasets, transforms class…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50624471 依照教程:深入MNIST教程和Deep MNIST for Experts(英文官网),测试代码及结果如下: # load MNIST data import input_data mnist = input_data.read_data_sets("Mnist_data/", one_hot=True) # s…
先说结论:没经过仔细调参,打不开论文所说代码链接(fq也没打开),结果和普通卷积网络比较没有优势.反倒是BN对网络起着非常重要的作用,达到了99.17%的测试精度(训练轮数还没到过拟合). 论文为<Training Very Deep Networks>,一说其在resnet前发表,resnet模仿了它. 如上式,对于每个输入,都用一个layer去计算T(sigmoid激活),初始设置T的偏置为负,这样使得激活值开始比较小,便于信息流通. 以下对此做了2个测试,一个将图片Flatten后训练,…
mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging.getLogger().setLevel(logging.DEBUG) batch_size = 100 mnist = mx.test_utils.get_mnist() train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['trai…
一段时间没有更新博文,想着也该写两篇文章玩玩了.而从一个简单的例子作为开端是一个比较不错的选择.本文章会手把手地教读者构建一个简单的Mnist(Fashion-Mnist同理)的分类器,并且会使用相对完整的Pytorch训练框架,因此对于初学者来说应该会是一个方便入门且便于阅读的文章.本文的代码来源于我刚学Pytorch时的小项目,可能在形式上会有引用一些github上的小代码.同时文风可能会和我之前看的一些外国博客有点相近. 本文适用对象: 刚入门的Pytorch新手,想要用Pytorch来完…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
1. 相关软件版本 xshell: xmanager: pycharm: pycharm破解服务器:https://jetlicense.nss.im/ 2. 将相应的软件安装(pojie好) a> 启动xmanager passive,这个是用来接受linux转发过来的x11的: b> 设置xshell,使用ssh隧道将x11转发到windows机器上 在被设置的服务器上执行echo $DISPLAY,如下: c> 通过设置后,就可以将linux中的图形界面转发到windows机器上了…
Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.…
[源码解析] PyTorch 分布式(4)------分布式应用基础概念 目录 [源码解析] PyTorch 分布式(4)------分布式应用基础概念 0x00 摘要 0x01 基本概念 0x02 设计思路 2.1 通信需求 2.2 概念 0x03 设置 0x04 点对点通信 0x05 集合通信 0x06 分布式训练 0x07 Ring-Allreduce 0x08 高级主题 8.1 通信后端 8.1.1 后端种类 8.1.2 使用哪个后端? 8.1.3 Gloo 后端 8.1.4 MPI后端…