[转]决策树在Kaldi中如何使用】的更多相关文章

转自:http://blog.csdn.net/chenhoujiangsir/article/details/51613144 说明:本文是kaldi主页相关内容的翻译(http://kaldi-asr.org/doc/tree_externals.html).目前网上已经有一个翻译的版本,但翻译的不是很清楚,导致我在刚学这部分内容的时候产生了一些误解,所以我希望结合我目前所知道的一些东西,尽量把这部分内容翻译地比较容易理解,但由于也是初学者,一些错误也是不可避免,希望大家发现后一起交流,以便…
http://blog.csdn.net/u013677156/article/details/77893661 1.kaldi解码过程 kaldi识别解码一段语音的过程是:首先提取特征,然后过声学模型AM,然后过解码网络HCLG.fst,最后输出识别结果. HCLG是解码时的重要组成部分.HCLG.fst是由4个fst经过一系列算法(组合.确定化和最小化等)组合而成的.4个fst分别是H.fst.C.fst.L.fst和G.fst,分别是HMM模型.上下文环境.词典和语言模型对应的fst. …
在基于DNN-HMM的语音识别中,DNN的作用跟GMM是一样的,即它是取代GMM的,具体作用是算特征值对每个三音素状态的概率,算出来哪个最大这个特征值就对应哪个状态.只不过以前是用GMM算的,现在用DNN算了.这是典型的多分类问题,所以输出层用的激活函数是softmax,损失函数用的是cross entropy(交叉熵).不用均方差做损失函数的原因是在分类问题上它是非凸函数,不能保证全局最优解(只有凸函数才能保证全局最优解).Kaldi中也支持DNN-HMM,它还依赖于上下文(context d…
决策树python建模中的坑 代码 #coding=utf-8 from sklearn.feature_extraction import DictVectorizerimport csvfrom sklearn import treefrom sklearn import preprocessingfrom sklearn.externals.six import StringIO allElectronicsData = open(r"D:\workspace\python\files\A…
steps/nnet3/train_dnn.py --l2-regularize-factor 影响模型参数的l2正则化强度的因子.要进行l2正则化,主要方法是在配置文件中使用'l2-regularize'进行配置.l2正则化因子将乘以组件中的l2正则化值,并且可用于通过模型平均化以校正与并行化带来的影响. (float,默认值= 1) src/nnet3/nnet-utils.cc:2030 void ApplyL2Regularization(const Nnet &nnet, BaseFl…
Chain模型的训练流程 链式模型的训练过程是MMI的无网格的版本,从音素级解码图生成HMM,对其使用前向后向算法,获得分母状态后验,通过类似的方式计算分子状态后验,但限于对应于转录的序列. 对于神经网络的每个输出索引(即对于每个pdf-id),我们计算(分子占有概率 - 分母占用概率)的导数,并将它们在网络中反向传播. 分母FST 对于计算中的分母部分,我们对HMM进行前向-后向计算.实际上,由于我们把它表示为一个有限状态接受器,标签(pdf-id)与弧而不是状态相关联,所以在正常的公式中分母…
转:http://blog.csdn.net/wbgxx333/article/details/25778483 本翻译原文http://kaldi.sourceforge.net/feat.html,由@煮八戒翻译,@wbglearn校对和修改. 特征提取 简介 我们做特征提取和波形读取的这部分代码,其目的是为了得到标准的MFCC(译注:梅尔倒谱系数)和PLP(译注:感知线性预测系数)特征,设置合理的默认值但留了一部分用户最有可能想调整的选项(如梅尔滤波器的个数,最小和最大截止频率等等).这部…
转自: http://blog.csdn.net/wbgxx333/article/details/24932533 本文是kaldi学习联盟中@冒顿翻译的,下面是@冒顿的翻译结果,在这里感谢@冒顿的辛勤劳动,希望更多的人加入到这个翻译上来,为更多的人学习…… 因为我们翻译的文档都有url,csdn不支持我们的直接发表,所以只能用图片,最后的翻译会集成pdf版,后面会公开的.最后,如果你发现有任何问题,欢迎留言讨论.我会在最快的时间回复大家,希望大家共同学习………
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
在基于GMM-HMM的传统语音识别里,比音素(phone)更小的单位是状态(state).一般每个音素由三个状态组成,特殊的是静音(SIL)由五个状态组成.这里所说的状态就是指HMM里的隐藏的状态,而每帧数据就是指HMM里的观测值.每个状态可以用一个GMM模型表示(这个GMM模型的参数是通过训练得到的).在识别时把每帧数据对应的特征值放进每个状态的GMM里算概率,概率最大的那个就是这帧对应的状态.再从状态得到音素(HMM负责),从音素得到词(字典模型负责),从词得到句子(语言模型负责),最终完成…