作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [l,u]=lu12(a,n) for k=1:n-1 for i=k+1:n a(i,k)=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-a(i,k)*a(k,j); end end end l=eye(n); u=zeros(n,n); for k=1:n fo…
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析中,用来解线性方程.求反矩阵或计算行列式. 什么是LU分解 如果有一个矩阵A,将A表示成下三角矩阵L和上三角矩阵U的乘积,称为A的LU分解. 更进一步,我们希望下三角矩阵的对角元素都为1: 一旦完成了LU分解,解线性方程组就会容易得多. LU分解的步骤 上一章讲到,对于满秩矩阵A来说,通过左乘一个消…
一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵:\(U\)是一个上三角矩阵. 比如\(A= \begin{bmatrix} 1 & 2 & 4 \\ 3 & 7 & 2 \\ 2 & 3 & 3 \\ \end{bmatrix}\),我们最终要分解成如下形式: \[A=L\cdot U = \begin{bmatrix} 1 & 0 & 0 \…
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去法,把左边的系数矩阵分解为一个单位下三角矩阵和一个上三角矩阵相乘的形式.这样,求解这个线性方程组就转化为求解两个三角矩阵的方程组.具体的算法细节这里不做过多的描述,有很多的教材和资源可以参考.这里推荐的参考读物如下: Numerical recipes C++,还有包括MIT的线性代数公开课. 2.…
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x'Ax>0,则称矩阵A 是正定的.正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0.相对应的,半正定矩阵的行列式必然 ≥ 0.   QR分解 矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵的乘积的形式. 任意实数方阵A,都能被分解为A=QR.这里的Q为正交单位阵…
有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b 消元后变为 ,即 , 由于  为上三角矩阵, 使用回带法即可求解方程组. 对矩阵  做如下运算 .在消元过程中,已知 ,如何求解  呢? 表示将矩阵A的第二行乘以 1 再加上矩阵A的第三行得到矩阵B的第三行,矩阵B的第一二行于矩阵A的第一二行保持一致.根据语义, 表示将矩阵B的第二行乘以 -1 再…
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解:A=CD  ,  A是m×n矩阵,C是m×4矩阵,D是4×n矩阵. 奇异值分解:A=UDVT 谱分解: 在求解线性方程组中,一个核心的问题就是矩阵的LU分解,我们将一个矩阵A分解为两个更加简单的矩阵的复合LU,其中L是下三角矩阵,U是阶梯形矩阵.下三角矩阵和上三角矩阵具有非常良好的性质:Lx=y…
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式是:x = Gx + y; 对应的Matlab代码如下: function[L, U] =zgaxpylu(A) %calculate LU decomposition based on Gaxpy operation %the same way as zlu.m but differnt appr…
n=4;%确定需要LU分解的矩阵维数 %A=zeros(n,n); L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵 tempU=zeros(1,n);tempP=zeros(1,n);%初始化中间变量矩阵 A=[1 2 -3 4;4 8 12 -8;2 3 2 1;-3 -1 1 -4];%需要LU分解矩阵赋值 for p=1:n %将A矩阵赋值给U for q=1:n U(p,q)=A(p,q); end end jt=1;kt=0; for i=1:n-1…
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> using namespace std; #define N 20 double A[N][N],L[N][N],U[N][N],b[N],Y[N],X[N]; /// --------------------------------------------------------------------…