首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Skip-Gram模型
】的更多相关文章
RNN、LSTM、Seq2Seq、Attention、Teacher forcing、Skip thought模型总结
RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hidden是f(wx+b),但是依然没有输出) 这里RNN同时和当前的输入有关系,并且是上一层的输出有关系. 初步的RNN(增加输出softmax(Wx+b),输出和hidden state的区别是对wx+b操作的函数不同) 备注多层的神经细胞和全连接层的区别: 全连接层只有:输入.输出和权重矩阵, 如下图. 初步的RNN和…
Paddle Graph Learning (PGL)图学习之图游走类模型[系列四]
Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 更多详情参考:Paddle Graph Learning 图学习之图游走类模型[系列四] https://aistudio.baidu.com/aistudio/projectdetail/5002782?contributionType=1 相关项目参考: 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一] https://aistudio.baidu.com/aistudio/projec…
Tensorflow 的Word2vec demo解析
简单demo的代码路径在tensorflow\tensorflow\g3doc\tutorials\word2vec\word2vec_basic.py Sikp gram方式的model思路 http://tensorflow.org/tutorials/word2vec/index.md 另外可以参考cs224d课程的课件. 窗口设置为左右1个词 对应skip gram模型 就是一个单词预测其周围单词(cbow模型是 输入一系列context词,预测一个中心词) Quick…
word2vec的Java源码【转】
一.核心代码 word2vec.java package com.ansj.vec; import java.io.*; import java.lang.reflect.Array; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; imp…
利用 TensorFlow 入门 Word2Vec
利用 TensorFlow 入门 Word2Vec 原创 2017-10-14 chen_h coderpai 博客地址:http://www.jianshu.com/p/4e16ae0aad25 或者点击阅读原文 我认为学习算法的最好方法就是尝试去实现它,因此这个教程我们就来学习如何利用 TensorFlow 来实现词嵌入. 这篇文章我们不会去过多的介绍一些词向量的内容,所以很多 king - man - woman - queue 的例子会被省去,直接进入编码实践过程. 我们如何设计这些词嵌…
DeepLearning.ai学习笔记(五)序列模型 -- week2 自然语言处理与词嵌入
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同理. 但是这样的表示方法有一个缺点,看是看下图中右侧给出的例子,比如给出这么一句不完整的话: **I want a glass of orange ___** 假设通过LSTM算法学到了空白处应该填"juice".但是如果将orange改成apple,即 **I want a glass…
DLNg序列模型第二周NLP与词嵌入
1.使用词嵌入 给了一个命名实体识别的例子,如果两句分别是“orange farmer”和“apple farmer”,由于两种都是比较常见的,那么可以判断主语为人名. 但是如果是榴莲种植员可能就无法判断了,因为比较不常见. 此时使用 词嵌入,是一个训练好的模型,能够表示说,oragne和durian是类似的词,farmer和cultivator是同义词. 词向量需要在大量数据上进行训练,此时又谈到了迁移学习. 首先从大的语料库中学习词嵌入,然后将模型运用到小的数据集上,或许还可以从小数据集上更…
NLP学习(4)----word2vec模型
一. 原理 哈弗曼树推导: https://www.cnblogs.com/peghoty/p/3857839.html 负采样推导: http://www.hankcs.com/nlp/word2vec.html https://github.com/kmkolasinski/deep-learning-notes/blob/master/seminars/2017-01-Word2Vec/slides.pdf https://blog.csdn.net/u014595019/article/…
tensorflow在文本处理中的使用——CBOW词嵌入模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-cookbook 数据:http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz CBOW概念图: 步骤如下: 必要包 声明模型参数 读取数据集 创建单词字典,转换句子列表为单词索引列表 生成批量数据 构建…
tensorflow在文本处理中的使用——skip-gram模型
代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理 代码地址:https://github.com/nfmcclure/tensorflow-cookbook 数据来源:http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz 理解互相关联的单词:king - man + woman = queen 如果已知man和woman语义相关联,那我们可…
无所不能的Embedding 1 - Word2vec模型详解&代码实现
word2vec是google 2013年提出的,从大规模语料中训练词向量的模型,在许多场景中都有应用,信息提取相似度计算等等.也是从word2vec开始,embedding在各个领域的应用开始流行,所以拿word2vec来作为开篇再合适不过了.本文希望可以较全面的给出Word2vec从模型结构概述,推导,训练,和基于tf.estimator实现的具体细节.完整代码戳这里https://github.com/DSXiangLi/Embedding 模型概述 word2vec模型结构比较简单,是为…
Word2Vec总结
摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 Word2Vec是一个可以将语言中的字词转换为向量表达(Vector Respresentations)的模型,Word2vec可以将字词转为连续值的向量表达,并且其中意义相近的词将被映射到向量空间中相近的位置.其主要依赖的假设是Distributional Hypothesis,即在相同语境中出现的词其语义也相近.Word2vec主要分为CBOW(Continu…
词向量之Word2vector原理浅析
原文地址:https://www.jianshu.com/p/b2da4d94a122 一.概述 本文主要是从deep learning for nlp课程的讲义中学习.总结google word2vector的原理和词向量的训练方法.文中提到的模型结构和word2vector的代码实现并不一致,但是可以非常直观的理解其原理,对于新手学习有一定的帮助.(首次在简书写技术博客,理解错误之处,欢迎指正) 二.词向量及其历史 1. 词向量定义 词向量顾名思义,就是用一个向量的形式表示一个词.为什么…
lecture2-word2vec-七月在线nlp
离散表示: one-hot bag of words -- 词权重 ~不能表示顺序关系 TF-IDF (Term Frequency - Inverse Document Frequency) [0.693, 1.386, 0.693, 0.693, 1.099, 0, 0, 0, 0.693, 0.693] 词t的IDF weight N: 文档总数, nt: 含有词t的文档数 Binary weighting [1, 1, 1, 1, 1, 0, 0, 0, 1, 1]不能表示顺序关系…
基于双向LSTM和迁移学习的seq2seq核心实体识别
http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值. 比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别.这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起.如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的…
DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec
DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NLP词的表示方法类型 1.词的独热表示one-hot representation 2.词的分布式表示distributed representation 三.NLP语言模型 四.词的分布式表示 1. 基于矩阵的分布表示 2. 基于聚类的分布表示 3. 基于神经网络的分布表示,词嵌入( word em…
利用Tensorflow进行自然语言处理(NLP)系列之二高级Word2Vec
本篇也同步笔者另一博客上(https://blog.csdn.net/qq_37608890/article/details/81530542) 一.概述 在上一篇中,我们介绍了Word2Vec即词向量,对于Word Embeddings即词嵌入有了些基础,同时也阐述了Word2Vec算法的两个常见模型 :Skip-Gram模型和CBOW模型,本篇会对两种算法做出比较分析并给出其扩展模型-GloVe模型. 首先,我们将比较下原Skip-gram算法和优化后的新Skip-gram算法情况.对比下S…
Network Embedding
网络表示 网络表示学习(DeepWalk,LINE,node2vec,SDNE) https://blog.csdn.net/u013527419/article/details/76017528 网络表示学习相关资料 https://blog.csdn.net/u013527419/article/details/74853633 NE(Network Embedding)论文小览 https://blog.csdn.net/Dark_Scope/article/details/7427958…
Network Embedding 论文小览
Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横空出世,似乎一切东西都在被embedding,今天我们要关注的这个领域是Network Embedding,也就是基于一个Graph,将节点或者边投影到低维向量空间中,再用于后续的机器学习或者数据挖掘任务,对于复杂网络来说这是比较新的尝试,而且取得了一些效果. 本文大概梳理了最近几年流行的一些方法和…
Word2vector原理
词向量: 用一个向量的形式表示一个词 词向量的一种表示方式是one-hot的表示形式:首先,统计出语料中的所有词汇,然后对每个词汇编号,针对每个词建立V维的向量,向量的每个维度表示一个词,所以,对应编号位置上的维度数值为1,其他维度全为0.这种方式存在问题并且引发新的质疑:1)无法衡量相关词之间的距离 2)V维表示语义空间是否有必要 词向量获取方式: 1)基于奇异值分解的方法 a.单词-文档矩阵 基于的假设:相关词往往出现在同一文档中,例如,banks 和 bonds, stocks,mone…